首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Yang W  Liu Y  Chen L  Gao T  Hu B  Zhang D  Liu F 《Current microbiology》2007,54(4):307-314
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. In order to understand the gene of zinc uptake regulator (zur) involved in virulence of the pathogen in rice, we generated a mutant OSZRM by homologous suicide plasmid integration. The mutant failed to grow in NYGB medium supplemented with Zn2+ or Fe3+ at a concentration of 500 μM or 6 mM, whereas the wild-type strain grew well at the same conditions. The zur mutant was hypersensitive to hydrogen peroxide and exhibited reduction catalase activity and the production of extracellular polysaccharide (EPS). Interestingly, the mutant showed a reduction in virulence on rice but still kept triggering hypersensitive response (HR) in tobacco. When the mutant was complemented with the zur gene, the response was recovered to wild-type. These results suggested that zur gene is a functional member of the Zur regulator family that controls zinc and iron homeostasis, oxidative stress, and EPS production, which is necessary for virulence in X. oryzae pv. oryzae. Wanfeng Yang and Yan Liu contributed equally to this work  相似文献   

4.
Yang F  Ma D  Wan Z  Liu W  Ji Y  Li R 《Mycopathologia》2011,172(5):347-355
Aspergillus fumigatus is an opportunistic pathogen that may cause severe invasive disease in immunocompromised patients. The filamentous fungi undergo polarized growth, searching for nutrients in the environment and causing invasive growth in tissue. Sho1 is a sensor of the high osmolarity glycerol pathway, and the sho1 mutant showed a decrease in growth rate. We found that sho1 is involved in the polarized growth of A. fumigatus. The sho1 mutation resulted in extended isotropic growth of germinating conidia followed by multiple germ tubes and wide hyphae with short intercalary cells by calcofluor white staining. The mechanism by which sho1 gene affected polarized growth is investigated. A reduced number of apical vesicles with greater dispersion were observed by transmission electron microscopy in the Spitzenkörper body of the sho1 mutant. Actin patches were distributed randomly at low density at early stages of mutant strain fungal development and reaggregated to the hyphal tip of later stages when long filamentous fungi formed. Actin patches located at the tip of polarized wild-type cells. RNA levels of polarized growth-related genes Rho GTPases were detected by real-time PCR. The sho1 gene did not affect the RNA expression when strains were cultured at 37°C for 6 h. At 17 h, the RNA expression of rho1, rho3 and CDC42 in the sho1 mutant were 0.18-, 0.18- and 0.33-fold of that in the wild type. The sho1 gene affected the polarized growth through affecting the expression of Rho GTPases, the distribution of actin cytoskeleton, vesicle quantity and distribution.  相似文献   

5.
Bacterial blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating bacterial disease in rice. A virulence-attenuated mutant strain HNU89K9 of X. oryzae pv. oryzae (KACC10331), with a transposon insertion in the pilQ gene was used for this study. The pilQ was involved in the gene cluster pilMNOPQ of the Xoo genome. Growth rate of the pilQ mutant was similar to that of wild-type. At level of amino acids, PilQ of Xoo showed that a high sequence identities more than 94% and 70% to Xanthomonas species and to Xyllela fastidiosa, respectively but a low sequence homology less than 30% to other bacterial species. The twitching motility forming a marginal fringe on PSA media was observed on colony of the wild-type strain KACC10331, but not in mutant HNU89K9. Wild-type Xoo cells formed a biofilm on the surface of the PVC plastic test tube, while the mutant strain HNU89K9 did not form a biofilm. The results suggest that the pilQ gene of X. oryzae pv. oryzae plays a critical role in pathogenicity, twitching motility, and biofilm formation.  相似文献   

6.
The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin as well as sclerotial formation. We used microarray technology to identify genes differentially expressed in wild-type veA and veA mutant strains that could be involved in aflatoxin production and sclerotial development in A. flavus. The DNA microarray analysis revealed 684 genes whose expression changed significantly over time; 136 of these were differentially expressed between the two strains including 27 genes that demonstrated a significant difference in expression both between strains and over time. A group of 115 genes showed greater expression in the wild-type than in the veA mutant strain. We identified a subgroup of veA-dependent genes that exhibited time-dependent expression profiles similar to those of known aflatoxin biosynthetic genes or that were candidates for involvement in sclerotial production in the wild type.  相似文献   

7.
The secretion of hydrolases by Beauveria bassiana is a main factor in the degradation of cuticle, while in filamentous fungi the resistance to 2-deoxy-d-glucose (2DG) is related to enzymatic deregulation. A series of 2DG-resistant B. bassiana strains were classified according to the phenotypes of germination (G) and radial growth rate (Ur), in addition to their virulence parameters on Tenebrio molitor. This analysis allowed distinction between mutants with greater (881.2) and lesser (884.5) G and Ur values, relative to the wild-type strain (88), which correlated with virulence parameters including maximal mortality (M) and time to reach 50% mortality (LT50). Subsequently, using the cuticle of T. molitor as the substrate for these strains, an enzymatic analysis (total proteases, Pr1, chitinases and β-N-acetylglucosaminidase) showed that the contrasting virulence traits were associated with different deregulation patterns: higher specific activities (up to 100%) for the more virulent mutant 881.2 and lower enzymatic levels for mutant 884.5, specifically chitinases (33% reduction), relative to the wild-type strain (88) for both mutants. The differences in cuticle-degrading enzymes were consistent with the appearance of hyphal bodies within infected insects. This is the first study describing the altered enzymatic profiles in 2DG-resistant mutants of B. bassiana with practical implications in the selection of improved strains for biological control.  相似文献   

8.
The gene coding for alcohol acetyltransferase (ATF2), which catalyzes the esterification of isoamyl alcohol and acetyl coenzyme A (acetyl-CoA), was cloned from Saccharomyces cerevisiae and expressed in Escherichia coli. This genetically engineered strain of E. coli produced the ester isoamyl acetate when isoamyl alcohol was added externally to the cell culture medium. Various competing pathways at the acetyl-CoA node were inactivated to increase the intracellular acetyl-CoA pool and divert more carbon flux to the ester synthesis pathway. Several strains with deletions in the ackA-pta and/or ldh pathways and bearing the ATF2 on a high-copy-number plasmid were constructed and studied. Compared to the wild-type, ackA-pta and nuo mutants produced higher amounts of ester and an ackA-pta-ldh-nuo mutant lower amounts. Isoamyl acetate production correlated well with intracellular coenzyme A (CoA) and acetyl-CoA levels. The ackA-pta-nuo mutant had the highest intracellular CoA/acetyl-CoA level and hence produced the highest amount of ester (1.75 mM) during the growth phase under oxic conditions and during the production phase under anoxic conditions.  相似文献   

9.
A mutant strain of Vibiro alginolyticus with an in-frame deletion of the toxR gene was constructed to reveal the role of ToxR in the physiology and virulence of V. alginolyticus. The statistical analysis showed no significant difference in the growth ability, swarming motility, activity of extracellular protease and the virulence by injection (the value of LD50) between the wild-type and the toxR mutant. However, the deletion of toxR could decrease the level of biofilm formation. The comparative proteomic analysis demonstrated the deletion mutation of toxR could up-regulate the expression of glutamine synthetase and levansucrase, and down-regulate the expression of 10 proteins such as OmpU, DnaK, etc. These results suggest that ToxR may be involved in the early stages of infection by influencing colonization of the bacteria on the surface of the intestine through enhancing the biofilm information of V. alginolyticus via modulating the expression of glutamine synthetize, levansucrase and OmpU.  相似文献   

10.
Corynebacterium glutamicum strains are used for the fermentative production of l-glutamate. Five C. glutamicum deletion mutants were isolated by two rounds of selection for homologous recombination and identified by Southern blot analysis. The growth, glucose consumption and glutamate production of the mutants were analyzed and compared with the wild-type ATCC 13032 strain. Double disruption of dtsR1 (encoding a subunit of acetyl-CoA carboxylase complex) and pyc (encoding pyruvate carboxylase) caused efficient overproduction of l-glutamate in C. glutamicum; production was much higher than that of the wild-type strain and ΔdtsR1 strain under glutamate-inducing conditions. In the absence of any inducing conditions, the amount of glutamate produced by the double-deletion strain ΔdtsR1Δpyc was more than that of the mutant ΔdtsR1. The activity of phosphoenolpyruvate carboxylase (PEPC) was found to be higher in the ΔdtsR1Δpyc strain than in the ΔdtsR1 strain and the wild-type strain. Therefore, PEPC appears to be an important anaplerotic enzyme for glutamate synthesis in ΔdtsR1 derivatives. Moreover, this conclusion was confirmed by overexpression of ppc and pyc in the two double-deletion strains (ΔdtsR1Δppc and ΔdtsR1Δpyc), respectively. Based on the data generated in this investigation, we suggest a new method that will improve glutamate production strains and provide a better understanding of the interaction(s) between the anaplerotic pathway and fatty acid synthesis.  相似文献   

11.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED) pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis pathway, but the glucose consumption rate could not be improved. Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally.  相似文献   

12.
In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to the wild type. In this work, a C. acetobutylicum mutant strain with a selectively disrupted ack gene, encoding AK, was constructed and genetically and physiologically characterized. The ack (-) strain showed a reduction in acetate kinase activity of more than 97% compared to the wild type. The fermentation profiles of the ack (-) and wild-type strain were compared using two different fermentation media, CGM and CM1. The latter contains acetate and has a higher iron and magnesium content than CGM. In general, fermentations by the mutant strain showed a clear shift in the timing of peak acetate production relative to butyrate and had increased acid uptake after the onset of solvent formation. Specifically, in acetate containing CM1 medium, acetate production was reduced by more than 80% compared to the wild type under the same conditions, but both strains produced similar final amounts of solvents. Fermentations in CGM showed similar peak acetate and butyrate levels, but increased acetoin (60%), ethanol (63%) and butanol (16%) production and reduced lactate (-50%) formation by the mutant compared to the wild type. These findings are in agreement with the proposed regulatory function of butyryl phosphate as opposed to acetyl phosphate in the metabolic switch of solventogenic clostridia.  相似文献   

13.
In this study, the glucose 6-phosphate dehydrogenase gene (XOO2314) was inactivated in order to modulate the intracellular glucose 6-phosphate, and its effects on xanthan production in a wild-type strain of Xanthomonas oryzae were evaluated. The intracellular glucose 6-phosphate was increased from 17.6 to 99.4 μmol g−1 (dry cell weight) in the gene-disrupted mutant strain. The concomitant increase in the glucose 6-phosphate was accompanied by an increase in xanthan production of up to 2.23 g l−1 (culture medium). However, in defined medium supplemented with 0.4% glucose, the growth rate of the mutant strain was reduced to 52.9% of the wild-type level. Subsequently, when a family B ATP-dependent phosphofructokinase from Escherichia coli was overexpressed in the mutant strain, the growth rate was increased to 142.9%, whereas the yields of xanthan per mole of glucose remained approximately the same.  相似文献   

14.
15.
Two isolates of Beauveria bassiana, wild type (wt) and its mutant type (mt) were compared in terms of growth patterns on culture plates containing media based on wheat bran, grasshopper exoskeletons, colloidal chitin or Sabouraud-dextrose agar (SDA). Germination for the mt isolate was up to 33% faster in all media. Influence of media on virulence was determined against larvae and adults of Tenebrio molitor. Mortality higher than 90% was reached for adults after 6 days using conidia from all media. For larvae, a mortality of 80% was reached after 11 days with conidia collected from SDA medium and between 15 and 35% with conidia from other media. In SDA medium, conidial yield was almost ten times higher for the mt isolate compared to the wt isolate; however, virulence traits were similar against either larvae or adults. These results may influence commercial preparations of entomopathogenic fungi based on conidia.  相似文献   

16.
17.
Aspergillus fumigatus is an important pathogen of the immunocompromised host, causing pneumonia and invasive disseminated disease with high mortality. In order to determine the importance of lysine biosynthesis for growth and pathogenicity, the A. fumigatus lysF gene, encoding a homologue of the A. nidulans homoaconitase LysF, was cloned and characterized. Cosmid cosGTM encoding lysF complemented a lysF mutant of Aspergillus nidulans. A. fumigatus lysF was deleted, resulting in a lysine-auxotroph. This phenotype was complemented to the wild-type by supplementation of the medium with both L-lysine and -aminoadipic acid, or transformation using cosmid cosGTM. To study the virulence of the lysF deletion mutant of A. fumigatus, a low-dose intranasal mouse infection model of invasive aspergillosis was optimized for immunosuppressed BALB/c mice, allowing the application of an infection dose as low as 5×103 conidia per mouse. In this murine model, the lysF mutant was avirulent, suggesting that lysine biosynthesis, or at least a functional homoaconitase, is important for survival of A. fumigatus in vivo and a potential target for antifungal drugs.  相似文献   

18.
19.
Several reports in the literature have described a differential sensitivity to ketolide antibiotics in ermB strains of Streptococcus pyogenes and Streptococcus pneumoniae resistant to erythromycin. Strains of S. pyogenes and S. pneumoniae carrying different erm gene alleles were examined for their susceptibility to the ketolide antibiotics cethromycin (ABT-773) and telithromycin. The effect of the antibiotics on cell growth and viability was assessed as were effects on protein synthesis and 50S ribosomal subunit formation. The susceptibility of wild-type strains of both organisms was compared with effects in strains containing the ermA and ermB methyltransferase genes. A wild-type antibiotic-susceptible strain of S. pyogenes was comparable to an ermA strain of the organism in its ketolide sensitivity, with IC50 values for 50% inhibition of protein synthesis and 50S ribosomal subunit formation of 10 ng/mL for cethromycin and 16 ng/mL for telithromycin. An S. pneumoniae strain with the ermB gene and an S. pyogenes strain with the ermA gene were also similar in their sensitivity to ketolide inhibition. IC50 values for inhibition of translation and subunit formation in S. pneumoniae (ermB) were 30 ng/mL and 55 ng/mL and for the ermA strain of S. pyogenes they were 15 ng/mL and 35 ng/mL respectively. By contrast, an S. pyogenes ermB strain was significantly more resistant to both ketolides, with IC50 values for inhibition of 50S synthesis of 215 and 380 ng/mL for the two ketolides. Experiments were conducted to examine ribosome synthesis and translational activity in the two ermB strains at intervals during growth in the presence of each antibiotic. Cell viability and 50S subunit formation were dramatically reduced in the S. pneumoniae strain during continued growth with either drug. By contrast, the ketolides had little effect on the S. pyogenes strain growing with the antibiotics. The results indicate that ketolides have a reduced inhibitory effect on translation and 50S subunit synthesis in S. pyogenes with the ermB gene compared with the other strains examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号