首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A human cDNA, HFB30, encoding a novel protein that contains a RING finger (C3HC4-type zinc finger) motif was isolated. This cDNA clone consists of 3056 nucleotides and encodes an open reading frame of a 474 amino acid protein. From RT-PCR analysis, the messenger RNA was ubiquitously expressed in various human tissues. The gene was located to the chromosome 5q23.3-q31.1 region by PCR-based analyses with both a human/rodent monochromosomal hybrid cell panel and a radiation hybrid mapping panel. Furthermore, the gene consists of nine exons that span about 20 kb of genome DNA.  相似文献   

4.
Genetic alterations of RING finger genes, encoding an ubiquitin-protein ligase, are implicated in several types of human cancer through dysregulation of growth regulators. Here, a novel RING finger gene, RNF26, was cloned and characterized. The RNF26 gene on human chromosome 11q23 region was found to encode a polypeptide of 433 amino acids with the N-terminal leucine zipper domain and the C-terminal RING finger domain. Among the RING finger protein family, RING finger domains of RNF26, CGR19, NEURL, KIAA0554, and AK022937 were found to constitute a novel C3HC5 subfamily, which is distinct from C3H2C3 or C3HC4 subfamilies. RING finger domain of RNF26 was most homologous to that of CGR19 (49% amino-acid identity). The 3.2-kb RNF26 mRNA was expressed ubiquitously in normal human tissues, but was upregulated in several human cancer cell lines, including HL-60 (promyelocytic leukemia), HeLa S3 (cervical uterus cancer), SW480 (colorectal cancer), and MKN7 (gastric cancer). In addition, RNF26 was upregulated in 50% of primary gastric cancer examined in this study. Although substrates of ubiquitination mediated by RNF26 remain to be elucidated, RNF26 upregulation in several types of human cancer might be implicated in carcinogenesis through dysregulation of its substrates.  相似文献   

5.
RING finger proteins are zinc finger proteins containing the RING motifs. They act mainly as E3 ubiq-uitin ligases, bind the ubiquitin E2 conjugating enzyme and promote degradation of targeted proteins, Many novel genes have been isolated and differentially expressed in human adult and embryo testis by a testis cDNA-array differential display technique. A novel RING finger cDNA is highly expressed in adult testis and at low level in fetal testis. It was named Spg2. It contains a 2055 nucleotide ORF, en-codes a 685-amino-acid RNF6 protein, and has a RING finger in its C terminal. NCBI Blast shows that the gene is located on chromosome 13 and contains five exons. A multiple tissue expression profile also indicates that it is highly expressed in human testis, so we speculate that it may be associated with human spermatogenesis by virtue of the action of its RING domain.  相似文献   

6.
RNF144A is involved in protein ubiquitination and functions as an ubiquitin‐protein ligase (E3) via its RING finger domain (RNF144A RING). RNF144A is associated with degradation of heat‐shock protein family A member 2 (HSPA2), which leads to the suppression of breast cancer cell proliferation. In this study, the solution structure of RNF144A RING was determined using nuclear magnetic resonance. Moreover, using a metallochromic indicator, we spectrophotometrically determined the stoichiometry of zinc ions and elucidated that RNF144A RING binds two zinc atoms. This structural analysis provided the position and range of the active site of RNF144A RING at the atomic level, which contributes to the creation of artificial RING fingers having the specific ubiquitin‐conjugating enzyme (E2)‐binding capability.  相似文献   

7.
RNF36 (ring finger protein 36; alias Trif), a member of the RING zinc finger protein family, is expressed in germ cells at round spermatid stages during spermatogenesis. RING finger proteins have been implicated in a variety of functions including oncogenesis, viral replication, and developmental processes. Since no germ cell line is presently available to study the function of RNF36, in this research, we expressed RNF36 truncated and full-length proteins in COS-7 and HEK-293 cell lines to study the effect of RNF36 in somatic cells. The full-length RNF36 protein in both cell lines showed a speckled pattern in the nucleus. Truncated RNF36-1 protein with its putative nuclear localization signal (NLS) remained within the nucleus but lost the speckled pattern. The promyelocytic leukemia (PML) protein, another RING finger protein, was previously identified as present in the nucleus with a speckled pattern. Double-staining and coimmunoprecipitation analyses suggested that RNF36 colocalizes and interacts with PML. In vitro phosphorylation analysis further suggested that RNF36 nuclear localization is under the control of phosphorylation, which might be mediated by p38. Treatment with the p38 inhibitor SB203580 resulted in the cytoplasmic translocation of RNF36. Overexpression of full-length RNF36 in cells induced about half of the transfected cells to undergo cell death. The results of DNA fragmentation assays, flow cytometry assay, and TUNEL staining suggest that the death of RNF36-transfected cells was caused by apoptosis. Following further characterization of the molecular mechanism of RNF36-induced apoptosis, we found that the expression of Bax, caspase-2, and receptor-interacting protein were elevated upon RNF36 induction in test cells. These results suggest that RNF36 may interact with PML and induce cell apoptosis. We suspect that RNF36 may play a role in germ cell homeostasis during spermatogenesis.  相似文献   

8.
The recently identified RNF125 [RING (really interesting new gene) finger protein 125], or TRAC-1 (T-cell RING protein in activation 1), is unique among ubiquitin ligases in being a positive regulator of T-cell activation. In addition, TRAC-1 has been shown to down-modulate HIV replication and to inhibit pathogen-induced cytokine production. However, apart from the presence of an N-terminal C3HC4 (Cys(3)-His-Cys(4)) RING domain, the TRAC-1 protein remains uncharacterized. In the present paper, we report novel interactions and modifications for TRAC-1, and elucidate its domain organization. Specifically, we determine that TRAC-1 associates with membranes and is excluded from the nucleus through myristoylation. Our data are further consistent with a crucial role for the C-terminus in TRAC-1 function. In this region, novel domains were recognized through the identification of three closely related proteins: RNF114, RNF138 and RNF166. TRAC-1 and its relatives were found to contain, apart from the RING domain, a C2HC (Cys(2)-His-Cys)- and two C2H2 (Cys(2)-His(2))-type zinc fingers, as well as a UIM (ubiquitin-interacting motif). The UIM of TRAC-1 binds Lys(48)-linked polyubiquitin chains and is, together with the RING domain, required for auto-ubiquitination. As a consequence of auto-ubiquitination, the half-life of TRAC-1 is shorter than 30 min. The identification of these novel modifications, interactions, domains and relatives significantly widens the contexts for investigating TRAC-1 activity and regulation.  相似文献   

9.
RNF151, a testis-specific RING finger protein, interacts with dysbindin   总被引:1,自引:0,他引:1  
RING finger proteins play important roles in spermatogenesis. Here, we report that a novel RING finger protein RNF151, with a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TRAF-type zinc finger domain, was exclusively expressed in the mouse testis and developmentally regulated during spermatogenesis. While RNF151 mRNA was present in round spermatids, its protein was expressed in elongating spermatids of the stage VIII-IX seminiferous tubules. The NLS together with the RING domain were necessary and sufficient for the nuclear localization of RNF151-EGFP in transfected cells. Yeast two-hybrid screening identified the physical interaction of mouse RNF151 and dysbindin, which was confirmed by the co-immunoprecipitation of the proteins and by their co-localization in intact cells. As dysbindin has lately been shown to be involved in membrane biogenesis and fusion, a key process for acrosome formation, we propose that RNF151 may play a role in acrosome formation.  相似文献   

10.
11.
Ubiquitin adducts surrounding DNA double-strand breaks (DSBs) have emerged as molecular platforms important for the assembly of DNA damage mediator and repair proteins. Central to these chromatin modifications lies the E2 UBC13, which has been implicated in a bipartite role in priming and amplifying lys63-linked ubiquitin chains on histone molecules through coupling with the E3 RNF8 and RNF168. However, unlike the RNF8-UBC13 holoenyzme, exactly how RNF168 work in concert with UBC13 remains obscure. To provide a structural perspective for the RNF168-UBC13 complex, we solved the crystal structure of the RNF168 RING domain. Interestingly, while the RNF168 RING adopts a typical RING finger fold with two zinc ions coordinated by several conserved cystine and histine residues arranged in a C3HC4 “cross-brace” manner, structural superimposition of RNF168 RING with other UBC13-binding E3 ubiquitin ligases revealed substantial differences at its corresponding UBC13-binding interface. Consistently, and in stark contrast to that between RNF8 and UBC13, RNF168 did not stably associate with UBC13 in vitro or in vivo. Moreover, domain-swapping experiments indicated that the RNF8 and RNF168 RING domains are not functionally interchangeable. We propose that RNF8 and RNF168 operate in different modes with their cognate E2 UBC13 at DSBs.  相似文献   

12.
13.
The genome of Bombyx mori nucleopolyhedrovirus (BmNPV) is predicted to contain six RING finger proteins: IAP1, ORF35, IAP2, CG30, IE2, and PE38. Several other members of the RING finger family have recently been shown to have the ubiquitin-ligase (E3) activity. We thus examined whether BmNPV RING finger proteins have the E3 activity. In vitro ubiquitination assay with the rabbit reticulocyte lysates and BmNPV RING finger proteins fused with maltose-binding protein (MBP) showed that four of them (IAP2, IE2, PE38, and CG30) were polyubiquitinated in the presence of zinc ion. Furthermore, MBP-IAP2, MBP-IE2, and MBP-PE38 were able to reconstitute ubiquitination activity in cooperation with the Ubc4/5 subfamily of ubiquitin-conjugating enzymes. Mutational analysis also showed that ubiquitination activity of MBP-IAP2, MBP-IE2, and MBP-PE38 were dependent on their RING finger motif. Therefore, these results suggest that IAP2, IE2, and PE38 may function as E3 enzymes during BmNPV infection.  相似文献   

14.
15.
Jin X  Cheng H  Chen J  Zhu D 《The FEBS journal》2011,278(1):78-84
Protein ubiquitination mediated by ubiquitin ligases plays a very important role in a wide spectrum of biological processes including development and disease pathogenesis. RING finger protein 13 (RNF13) is a recently identified ubiquitin ligase which contains an N-terminal protease-associated domain and a C-terminal RING finger domain separated by a transmembrane region. RNF13 is an evolutionarily conserved protein. Most interestingly, RNF13 expression is developmentally regulated during myogenesis and is upregulated in various human tumors. These data suggest that RNF13, acting as an ubiquitin ligase, might have profound biological functions during development and disease. This minireview summarizes recent work on RNF13 functions related to cell proliferation, differentiation and cancer development.  相似文献   

16.
RNF5 is a RING finger protein found to be important in the growth and development of Caenorhabditis elegans. The search for RNF5-associated proteins via a yeast two-hybrid screen identified a LIM-containing protein in C. elegans which shows homology with human paxillin. Here we demonstrate that the human homologue of RNF5 associates with the amino-terminal domain of paxillin, resulting in its ubiquitination. RNF5 requires intact RING and C-terminal domains to mediate paxillin ubiquitination. Whereas RNF5 mediates efficient ubiquitination of paxillin in vivo, protein extracts were required for in vitro ubiquitination, suggesting that additional modifications and/or an associated E3 ligase assist RNF5 targeting of paxillin ubiquitination. Mutant Ubc13 efficiently inhibits RNF5 ubiquitination, suggesting that RNF5 generates polychain ubiquitin of the K63 topology. Expression of RNF5 increases the cytoplasmic distribution of paxillin while decreasing its localization within focal adhesions, where it is primarily seen under normal growth. Concomitantly, RNF5 expression results in inhibition of cell motility. Via targeting of paxillin ubiquitination, which alters its localization, RNF5 emerges as a novel regulator of cell motility.  相似文献   

17.
The RAD51 family is integral for homologous recombination (HR) mediated DNA repair and maintaining chromosome integrity. RAD51D, the fourth member of the family, is a known ovarian cancer susceptibility gene and required for the repair of interstrand crosslink DNA damage and preserving chromosomal stability. In this report, we describe the RNF138 E3 ubiquitin ligase that interacts with and ubiquitinates the RAD51D HR protein. RNF138 is a member of an E3 ligase family that contains an amino-terminal RING finger domain and a putative carboxyl-terminal ubiquitin interaction motif. In mammalian cells, depletion of RNF138 increased the stability of the RAD51D protein, suggesting that RNF138 governs ubiquitin-proteasome-mediated degradation of RAD51D. However, RNF138 depletion conferred sensitivity to DNA damaging agents, reduced RAD51 focus formation, and increased chromosomal instability. Site-specific mutagenesis of the RNF138 RING finger domain demonstrated that it was necessary for RAD51D ubiquitination. Presence of RNF138 also enhanced the interaction between RAD51D and a known interacting RAD51 family member XRCC2 in a yeast three-hybrid assay. Therefore, RNF138 is a newly identified regulatory component of the HR mediated DNA repair pathway that has implications toward understanding how ubiquitination modifies the functions of the RAD51 paralog protein complex.  相似文献   

18.
RING finger protein 152 (RNF152) is a novel RING finger protein and has not been well characterized. We report here that RNF152 is a canonical RING finger protein and has E3 ligase activity. It is polyubiqitinated partly through Lys-48-linked ubiquitin chains in vivo and this phenomenon is dependent on its RING finger domain and transmembrane domain. RNF152 is localized in lysosomes and co-localized with LAMP3, a lysosome marker. Moreover, over-expression of RNF152 in Hela cells induces apoptosis. These results suggest that RNF152 is a lysosome localized E3 ligase with pro-apoptotic activities. It is the first E3 ligase identified so far that is involved in lysosome-related apoptosis.  相似文献   

19.
We have recently developed a novel database system, designated as the virtual transcribed sequence (VTS) which efficiently extracts many genes from public human genome databases, and tested the feasibility of this novel computational approach (N. Miyajima, C. Burge, T. Saito, Biochem. Biophys. Res. Commun. 272 (2000) 801; http://host45.maze.co.jp/vts/). In this study, using the VTS approach, we isolated a cDNA for a novel human gene with RING finger motif (C(3)HC(4)), which is not deposited in public EST databases. The isolated cDNA clone is 2163 bp in length, and contains an open reading frame of 452 amino acids. We designated the novel gene as RNF18. A database search showed that the RNF18 gene had the moderate similarity to SS-A/Ro52 protein, which is a ribonucleoprotein reactive with autoantibodies in patients with Sj?gren's syndrome and systemic lupus erythematosus. Tissue distribution analyses by Northern blot and RT-PCR methods demonstrated that the RNF18 messenger RNA was preferentially expressed in testis. The exon-intron boundaries of RNF18 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The isolated cDNA consists of eight exons that span about 11 kb of the genome DNA. The precise chromosomal location of the RNF18 gene was determined by PCR-based radiation hybrid mapping, and the gene was located to centromere region of chromosome 11 between markers NIB1900 and D11S1350. Taken together, the VTS approach should provide a novel cDNA cloning strategy for isolating unidentified genes, which are not found even in EST databases but are detectable computationally.  相似文献   

20.
The constitutive photomorphogenic 1 (COP1) protein of Arabidopsis functions as a molecular switch for the seedling developmental fates: photomorphogenesis under light conditions and skotomorphogenesis in darkness. The COP1 protein contains a cysteine-rich zinc-binding RING finger motif found in diverse groups of regulatory proteins. To understand the role of the COP1 RING finger in mediating protein-protein interaction, we have performed a yeast two-hybrid screen and isolated a novel protein with a RING-H2 motif, a variant type of the RING finger. This protein, designated COP1 Interacting Protein 8 (CIP8), is encoded by a single copy gene and localized to cytosol in a transient assay. In addition to the RING-H2 motif, the predicted protein has a C4 zinc finger, an acidic region, a glycine-rich cluster, and a serine-rich cluster. The COP1 RING finger and the CIP8 RING-H2 domains are sufficient for their interaction with each other both in vitro and in yeast, whereas neither motif displayed significant self-association. Moreover, site-directed mutagenesis studies demonstrated that the expected zinc-binding ligands of the RING finger and RING-H2 fingers are essential for their interaction. Our findings indicate that the RING finger motif, in this case, serves as autonomous protein-protein interaction domain. The allele specific effect of cop1 mutations on the CIP8 protein accumulation in seedlings indicates that its stability in vivo is dependent on the COP1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号