首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Artificial RING fingers (ARFs) are created by transplanting active sites of RING fingers onto cross‐brace structures. Human hydroxymethylglutaryl‐coenzyme A reductase degradation protein 1 (HRD1) is involved in the degradation of the endoplasmic reticulum (ER) proteins. HRD1 possesses the RING finger domain (HRD1_RING) that functions as a ubiquitin‐ligating (E3) enzyme. Herein, we determined the solution structure of HRD1_RING using nuclear magnetic resonance (NMR). Moreover, using a metallochromic indicator, we determined the stoichiometry of zinc ions spectrophotometrically and found that HRD1_RING binds to two zinc atoms. The Simple Modular Architecture Research Tool database predicted the structure of HRD1_RING as a typical RING finger. However, it was found that the actual structure of HRD1_RING adopts an atypical RING‐H2 type RING fold. This structural analysis unveiled the position and range of the active site of HRD1_RING that contribute to its specific ubiquitin‐conjugating enzyme (E2)‐binding capability.  相似文献   

2.
RING finger protein 152 (RNF152) is a novel RING finger protein and has not been well characterized. We report here that RNF152 is a canonical RING finger protein and has E3 ligase activity. It is polyubiqitinated partly through Lys-48-linked ubiquitin chains in vivo and this phenomenon is dependent on its RING finger domain and transmembrane domain. RNF152 is localized in lysosomes and co-localized with LAMP3, a lysosome marker. Moreover, over-expression of RNF152 in Hela cells induces apoptosis. These results suggest that RNF152 is a lysosome localized E3 ligase with pro-apoptotic activities. It is the first E3 ligase identified so far that is involved in lysosome-related apoptosis.  相似文献   

3.
4.
5.
We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ub iquitin‐A ctivated I nteraction T raps) are E3‐ubiquitin fusion proteins and, in an E1‐ and E2‐dependent manner, the C‐terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co‐purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester‐linked lariat intermediate or through an E2 thioester intermediate, and both WT and active‐site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double‐strand break repair. Using the RNF168 UBAIT, we identify H2AZ—a histone protein involved in DNA repair—as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.  相似文献   

6.
Cross‐brace structural motifs are required as a scaffold to design artificial RING fingers (ARFs) that function as ubiquitin ligase (E3) in ubiquitination and have specific ubiquitin‐conjugating enzyme (E2)‐binding capabilities. The Simple Modular Architecture Research Tool database predicted the amino acid sequence 131–190 (KIAA1045ZF) of the human KIAA1045 protein as an unidentified structural region. Herein, the stoichiometry of zinc ions estimated spectrophotometrically by the metallochromic indicator revealed that the KIAA1045ZF motif binds to two zinc atoms. The structure of the KIAA1045ZF motif bound to the zinc atoms was elucidated at the atomic level by nuclear magnetic resonance. The actual structure of the KIAA1045ZF motif adopts a C4HC3‐type PHD fold belonging to the cross‐brace structural family. Therefore, the utilization of the KIAA1045ZF motif as a scaffold may lead to the creation of a novel ARF.  相似文献   

7.
Ubiquitin adducts surrounding DNA double-strand breaks (DSBs) have emerged as molecular platforms important for the assembly of DNA damage mediator and repair proteins. Central to these chromatin modifications lies the E2 UBC13, which has been implicated in a bipartite role in priming and amplifying lys63-linked ubiquitin chains on histone molecules through coupling with the E3 RNF8 and RNF168. However, unlike the RNF8-UBC13 holoenyzme, exactly how RNF168 work in concert with UBC13 remains obscure. To provide a structural perspective for the RNF168-UBC13 complex, we solved the crystal structure of the RNF168 RING domain. Interestingly, while the RNF168 RING adopts a typical RING finger fold with two zinc ions coordinated by several conserved cystine and histine residues arranged in a C3HC4 “cross-brace” manner, structural superimposition of RNF168 RING with other UBC13-binding E3 ubiquitin ligases revealed substantial differences at its corresponding UBC13-binding interface. Consistently, and in stark contrast to that between RNF8 and UBC13, RNF168 did not stably associate with UBC13 in vitro or in vivo. Moreover, domain-swapping experiments indicated that the RNF8 and RNF168 RING domains are not functionally interchangeable. We propose that RNF8 and RNF168 operate in different modes with their cognate E2 UBC13 at DSBs.  相似文献   

8.
9.
Synaptotagmin‐like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N‐terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N‐terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross‐brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C4C4‐type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin‐conjugating enzyme (E2)‐binding capability, cross‐brace structures with eight zinc‐ligating residues are needed as the scaffold. The cross‐brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs.  相似文献   

10.
The heterodimeric ubiquitin conjugating enzyme (E2) UBC13-UEV mediates polyubiquitylation through lysine 63 of ubiquitin (K63), rather than lysine 48 (K48). This modification does not target proteins for proteasome-dependent degradation. Searching for potential regulators of this variant polyubiquitylation we have identified four proteins, namely RNF8, KIA00675, KF1, and ZNRF2, that interact with UBC13 through their RING finger domains. These domains can recruit, in addition to UBC13, other E2s that mediate canonical (K48) polyubiquitylation. None of these RING finger proteins were known previously to recruit UBC13. For one of these proteins, RNF8, we show its activity as a ubiquitin ligase that elongates chains through either K48 or K63 of ubiquitin, and its nuclear co-localization with UBC13. Thus, our screening reveals new potential regulators of non-canonical polyubiquitylation.  相似文献   

11.
The really interesting new gene (RING) family of proteins contains over 400 members with diverse physiological functions. A subset of these domains is found in the context of the RING-IBR-RING/TRIAD motifs which function as E3 ubiquitin ligases. Our sequence analysis of the C-terminal RING (RING2) from this motif show that several metal ligating and hydrophobic residues critical for the formation of a classical RING cross-brace structure are not present. Thus, we determined the structure of the RING2 from the RING-IBR-RING motif of HHARI and showed that RING2 has a completely distinct topology from classical RINGs. Notably, RING2 binds only one zinc atom per monomer rather than two and uses a different hydrophobic network to that of classical RINGs. Additionally, this RING2 topology is novel, bearing slight resemblance to zinc-ribbon motifs around the zinc site and is different from the topologies of the zinc binding sites found in RING and PHDs. We demonstrate that RING2 acts as an E3 ligase in vitro and using mutational analysis deduce the structural features required for this activity. Further, mutations in the RING-IBR-RING of Parkin cause a rare form of Parkinsonism and these studies provide an explanation for those mutations that occur in its RING2. From a comparison of the RING2 structure with those reported for RINGs, we infer sequence determinants that allow discrimination between RING2 and RING domains at the sequence analysis level.  相似文献   

12.
The Deltex (DTX) family is involved in ubiquitination and acts as Notch signaling modifiers for controlling cell fate determination. DTX promotes the development of the ubiquitin chain via its RING finger (DTX_RING). In this study, the solution structure of DTX_RING was determined using nuclear magnetic resonance (NMR). Moreover, by experiments with a metallochromic indicator, we spectrophotometrically estimated the stoichiometry of zinc ions and found that DTX_RING possesses zinc‐binding capabilities. The Simple Modular Architecture Research Tool database predicted the structure of DTX_RING as a typical RING finger. However, the actual DTX_RING structure adopts a novel RING fold with a unique topology distinct from other RING fingers. We unveiled the position and the range of the DTX_RING active site at the atomic level. Artificial RING fingers (ARFs) are made by grafting active sites of the RING fingers onto cross‐brace structure motifs. Therefore, the present structural analysis could be useful for designing a novel ARF.  相似文献   

13.
RNF144A, an E3 ubiquitin ligase for DNA-dependent protein kinase catalytic subunit (DNA-PKcs), can promote DNA damage-induced cell apoptosis. Here we characterize an important regulation of RNF144A through its transmembrane (TM) domain. The TM domain of RNF144A is highly conserved among species. Deletion of the TM domain abolishes its membrane localization and also significantly reduces its ubiquitin ligase activity. Further evidence shows that the TM domain is required for RNF144A self-association and that the self-association may be partially mediated through a classic GXXXG interaction motif. A mutant RNF144A-G252L/G256L (in the G252XXXG256 motif) preserves membrane localization but is defective in self-association and ubiquitin ligase activity. On the other hand, a membrane localization loss mutant of RNF144A still retains self-association and E3 ligase activity, which can be blocked by additional G252L/G256L mutations. Therefore, our data demonstrate that the TM domain of RNF144A has at least two independent roles, membrane localization and E3 ligase activation, to regulate its physiological function. This regulatory mechanism may be applicable to other RBR (RING1-IBR-RING2) E3 ubiquitin ligases because, first, RNF144B also self-associates. Second, all five TM-containing RBR E3 ligases, including RNF144A and RNF144B, RNF19A/Dorfin, RNF19B, and RNF217, have the RBR-TM(GXXXG) superstructure. Mutations of the GXXXG motifs in RNF144A and RNF217 have also be found in human cancers, including a G252D mutation of RNF144A. Interestingly, RNF144A-G252D still preserves self-association and ubiquitin ligase activity but loses membrane localization and is turned over rapidly. In conclusion, both proper membrane localization and self-association are important for RNF144A function.  相似文献   

14.
RING finger proteins are zinc finger proteins containing the RING motifs. They act mainly as E3 ubiq-uitin ligases, bind the ubiquitin E2 conjugating enzyme and promote degradation of targeted proteins, Many novel genes have been isolated and differentially expressed in human adult and embryo testis by a testis cDNA-array differential display technique. A novel RING finger cDNA is highly expressed in adult testis and at low level in fetal testis. It was named Spg2. It contains a 2055 nucleotide ORF, en-codes a 685-amino-acid RNF6 protein, and has a RING finger in its C terminal. NCBI Blast shows that the gene is located on chromosome 13 and contains five exons. A multiple tissue expression profile also indicates that it is highly expressed in human testis, so we speculate that it may be associated with human spermatogenesis by virtue of the action of its RING domain.  相似文献   

15.
16.
RNF43 is a recently discovered RING finger protein that is implicated in colon cancer pathogenesis. This protein possesses growth-promoting activity but its mechanism remains unknown. In this study, to gain insight into the biological action of RNF43 we characterized it biochemically and intracellularly. A combination of indirect immunofluorescence analysis and biochemical fractionation experiments suggests that RNF43 resides in the endoplasmic reticulum (ER) as well as in the nuclear envelope. Sucrose density gradient fractionation demonstrates that RNF43 co-exists with emerin, a representative inner nuclear membrane protein in the nuclear subcompartment. The cell-free system with pure components reveals that recombinant RNF43 fused with maltose-binding protein has autoubiquitylation activity. By the yeast two-hybrid screening we identified HAP95, a chromatin-associated protein interfacing the nuclear envelope, as an RNF43-interacting protein and substantiated this interaction in intact cells by the co-immunoprecipitation experiments. HAP95 is ubiquitylated and subjected to a proteasome-dependent degradation pathway, however, the experiments in which 293 cells expressing both RNF43 and HAP95 were treated with a proteasome inhibitor, MG132, show that HAP95 is unlikely to serve as a substrate of RNF43 ubiquitin ligase. These results infer that RNF43 is a resident protein of the ER and, at least partially, the nuclear membrane, with ubiquitin ligase activity and may be involved in cell growth control potentially through the interaction with HAP95.  相似文献   

17.
The repair of DNA double strand breaks by homologous recombination relies on the unique topology of the chains formed by Lys-63 ubiquitylation of chromatin to recruit repair factors such as breast cancer 1 (BRCA1) to sites of DNA damage. The human RING finger (RNF) E3 ubiquitin ligases, RNF8 and RNF168, with the E2 ubiquitin-conjugating complex Ubc13/Mms2, perform the majority of Lys-63 ubiquitylation in homologous recombination. Here, we show that RNF8 dimerizes and binds to Ubc13/Mms2, thereby stimulating formation of Lys-63 ubiquitin chains, whereas the related RNF168 RING domain is a monomer and does not catalyze Lys-63 polyubiquitylation. The crystal structure of the RNF8/Ubc13/Mms2 ternary complex reveals the structural basis for the interaction between Ubc13 and the RNF8 RING and that an extended RNF8 coiled-coil is responsible for its dimerization. Mutations that disrupt the RNF8/Ubc13 binding surfaces, or that truncate the RNF8 coiled-coil, reduce RNF8-catalyzed ubiquitylation. These findings support the hypothesis that RNF8 is responsible for the initiation of Lys-63-linked ubiquitylation in the DNA damage response, which is subsequently amplified by RNF168.  相似文献   

18.
RNF151, a testis-specific RING finger protein, interacts with dysbindin   总被引:1,自引:0,他引:1  
RING finger proteins play important roles in spermatogenesis. Here, we report that a novel RING finger protein RNF151, with a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TRAF-type zinc finger domain, was exclusively expressed in the mouse testis and developmentally regulated during spermatogenesis. While RNF151 mRNA was present in round spermatids, its protein was expressed in elongating spermatids of the stage VIII-IX seminiferous tubules. The NLS together with the RING domain were necessary and sufficient for the nuclear localization of RNF151-EGFP in transfected cells. Yeast two-hybrid screening identified the physical interaction of mouse RNF151 and dysbindin, which was confirmed by the co-immunoprecipitation of the proteins and by their co-localization in intact cells. As dysbindin has lately been shown to be involved in membrane biogenesis and fusion, a key process for acrosome formation, we propose that RNF151 may play a role in acrosome formation.  相似文献   

19.
20.
RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号