首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.  相似文献   

2.
3.
4.
5.
Following domestication, livestock breeds have experienced intense selection pressures for the development of desirable traits. This has resulted in a large diversity of breeds that display variation in many phenotypic traits, such as coat colour, muscle composition, early maturity, growth rate, body size, reproduction, and behaviour. To better understand the relationship between genomic composition and phenotypic diversity arising from breed development, the genomes of 13 traditional and commercial European pig breeds were scanned for signatures of diversifying selection using the Porcine60K SNP chip, applying a between-population (differentiation) approach. Signatures of diversifying selection between breeds were found in genomic regions associated with traits related to breed standard criteria, such as coat colour and ear morphology. Amino acid differences in the EDNRB gene appear to be associated with one of these signatures, and variation in the KITLG gene may be associated with another. Other selection signals were found in genomic regions including QTLs and genes associated with production traits such as reproduction, growth, and fat deposition. Some selection signatures were associated with regions showing evidence of introgression from Asian breeds. When the European breeds were compared with wild boar, genomic regions with high levels of differentiation harboured genes related to bone formation, growth, and fat deposition.  相似文献   

6.
7.
8.
The KIT gene has been shown to have multiple functions in hematopoiesis, melanogenesis, and gametogenesis. In addition, mutations of this gene cause pigmentation disorders in humans and mice and are responsible for coat color differences in pigs. While characterizing polymorphisms in the porcine KIT gene, we detected alternative splicing (AS) of the NAGNAG splice acceptor site at the boundary of intron 4 and exon 5. This AS event generated the E and I isoforms, characterized by insertion or deletion, respectively, of CAG at the borders of coding sequence. AS patterns measured in tissue samples from two randomly selected animals did not identified any tissue-specific outcomes. Analysis of AS patterns using three breeds demonstrated that Landrace and Large White pigs expressed both the E and I isoforms. In contrast, a subset of specimens from Korean Native Pigs (KNP) yielded a single I isoform. Alignment of the sequence from several species revealed that the region between the branch point sequence (BPS) and 3′ acceptor site is conserved. However, it is appeared that the selection of either the proximal or distal splice site varied between species. To test the breed specificity the NAGNAG splice acceptor site, we constructed two lineages of minigenes from KNP and Landrace pigs harboring breed-specific mutations. The minigene splicing assay demonstrated that both types of minigenes expressed both the E and I isoforms in two host cell lines, and no differences were detected in the AS pattern between the two breeds. We conclude that the AS at the NAGNAG splice acceptor site on intron 4/exon 5 in the porcine KIT gene is the result of noise selection at the splice site by the splicing machinery. Therefore, this AS event in the porcine KIT gene is unlikely to have any relationship with the coat color variations of Landrace and KNP breeds.  相似文献   

9.
10.
11.
12.
13.
In pigs, many production traits are known to vary among breeds or lines. These traits can be considered end phenotypes or external traits as they are the final results of complex biological interactions and processes whose fine biological mechanisms are still largely unknown. This study was designed to compare plasma and serum metabolomic profiles between animals of two heavy pig breeds (12 Italian Large White and 12 Italian Duroc), testing indirectly the hypothesis that different genetic backgrounds might be the determining factors of differences observed on the level of metabolites in the analyzed biofluids between breeds. We used a targeted metabolomic approach based on mass spectrometric detection of about 180 metabolites and applied a statistical validation pipeline to identify differences in the metabolomic profiles of the two heavy pig breeds. Blood samples were collected after jugulation at the slaughterhouse and prepared for metabolomics analysis that was carried out using the Biocrates AbsoluteIDQ p180 Kit, covering five different biochemical classes: glycerophospholipids, amino acids, biogenic amines, hexoses and acylcarnitines. A statistical pipeline that included the selection of the most relevant metabolites differentiating the two breeds by sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was coupled with a stability test and significance test determined with leave one out and permutation procedures. sPLS-DA plots clearly separated the pigs of the two investigated breeds. A few metabolites (a total of five metabolites considering the two biofluids) involved in key metabolic pathways largely contributed to these differences between breeds. In particular, a higher level of the sphingomyelins SM (OH) C14:1 (both in plasma and serum), SM (OH) C16:1 (in serum) and SM C16:0 (in serum) were observed in Italian Duroc than in Italian Large White pigs and the inverse was for the biogenic amine kynurenine (in plasma). The level of another biogenic amine (acetylornithine) was higher in Italian Large White than in Italian Duroc pigs in both analysed biofluids. These results provided biomarkers that could be important to understand the biological differences between these two heavy pig breeds. In particular, according to the functional role played by sphingomyelins in obesity-induced inflammatory responses, it could be possible to speculate that a higher level of sphingomyelins in Italian Duroc might be related to the higher interrmuscular fat deposition of this breed compared with the Italian Large White. Additional studies will be needed to evaluate the relevance of these biomarkers for practical applications in pig breeding and nutrition.  相似文献   

14.
15.
16.
Previous studies have confirmed that insulin growth factor-1 (IGF1) plays important roles in growth and body size in humans and animals. However, whether single nucleotide polymorphisms (SNPs) within the IGF1 gene affects body size and growth in pigs has been unclear. We identified IGF1 SNPs among 5 pig breeds (Berkshire, Duroc, Landrace, Yorkshire and Korea Native Pig) and found that the G allele of SNP (c.G189A) was associated with higher body weight and was more predominant in western pig breeds, while the Korean Native Pig is the breed with the highest frequency of the A allele. Four haplotypes (–GA–, –GG–, –AG–, and –AA–) were constructed using the 2 identified SNPs. The GA haplotype was most frequently observed, except in the Berkshire breed. In addition, these SNPs and haplotypes were significantly associated with body size (final weight), average daily gain, and backfat thickness (P < 0.05) in 2 intercrossed F2 pig populations (KNP × YS F2 and KNP × LR F2). Furthermore, the major GA haplotype had a significant additive effect on body size and average daily gain. In conclusion, specific SNPs within the porcine IGF1 gene may contribute to the smaller body size and lower growth rate of Korea Native Pigs.  相似文献   

17.
18.
Domestication and artificial selection have modified the genome landscape of the pig. The identification of selection signatures in the genome can help to elucidate the selection mechanisms and uncover the causal genes related to the phenotypic variations between domestic pig breeds. We scanned the genomes of Korean imported pig breeds against native breeds using Z-transformed Fst (ZFST) and Heterozygosity (ZHp) statistics to search for the signatures of positive selection. We identified 411 (ZFST?=?175; ZHp?=?256) putatively selected genes in commercial breeds. The gene regions identified were harboring those related to immunity, coat color, reproduction function and other traits. Several genes (e.g., PLSCR4, AGTR1 and CORIN) were related to reproduction traits such as fertility, ovulation rate, and uterine function. This study revealed genes which improve our understanding of the biological mechanisms of higher litter sizes, the phenotype of interest, in higher litter pig breeds.  相似文献   

19.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine sub-cutaneous fat thickness(SFT) and intramuscular fat(IMF) content.Obese and lean-type pig breeds show obvious differences in adipose deposition;however, the molecular mechanism underlying this phenotypic variation remains unclear.We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages(1―5 months) of Landrace(a leaner, Western breed) and Taihu pigs(a fatty, indigenous, Chinese breed).Variance analysis(ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant(FDR adjusted permutation, P<0.05) among 5 growth stages.Gene class test(GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages(PErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associ-ated with lipid and steroid metabolism.These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes.Clustering analysis revealed a very high level of significance(FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance(FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs.Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs.Based on a dy-namic Bayesian network(DBN) model, gene regulatory networks(GRNs) were reconstructed from time-series data for each pig breed.These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds;from these results, some potential key genes could be identified.Quantitative, real-time RT-PCR(QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages(R=0.874±0.071).These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

20.
The recent progress of DNA technologies including DNA fingerprinting (DFP) and random amplified DNA polymorphism (RAPD) analysis make it possible to identify the specific genetic traits of animals and to analyze the genetic diversity and relatedness between or within species or populations. Using those techniques, some efforts to identify and develop the specific DNA markers based on DNA polymorphism, which are related with economic traits for Korean native animals, Hanwoo (Korean native cattle), Korean native pig and Korean native chicken, have been made in Korea for recent a few years. The developed specific DNA markers successfully characterize the Korean native animals as the unique Korean genetic sources, distinctively from other imported breeds. Some of these DNA markers have been related to some important economic traits for domestic animals, for example, growth rate and marbling for Hanwoo, growth rate and back fat thickness for native pig, and growth rate, egg weight and egg productivity for native chicken. This means that those markers can be used in important marker-assisted selection (MAS) of Korean native domestic animals and further contribute to genetically improve and breed them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号