首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the central nervous system (CNS) of Drosophila embryos lacking regulator of cyclin A (rca1) or cyclin A, we observe that several ganglion mother cells (GMCs) fail to divide. Whereas GMCs normally produce two sibling neurons that acquire different fates ('A/B'), non-dividing GMCs differentiate exclusively in the manner of one of their progeny ('B'). In zygotic numb mutants, sibling neuron fate alterations ('A/B' to 'A/A') occur infrequently or do not occur in some sibling pairs; we have determined that depletion of both maternal and zygotic numb causes sibling neurons to acquire equalized fates ('A/A') with near-complete expressivity. In rca1, numb mutant embryos, we observe binary cell fate changes ('B' to 'A') in several GMCs as well. Finally, we have demonstrated that expression of Delta in the mesoderm is sufficient to attain both sibling fates. Our results indicate that the intrinsic determinant Numb is absolutely required to attain differential sibling neuron fates. While the extrinsic factors Notch and Delta are also required to attain both fates, our results indicate that Delta signal can be received from outside the sibling pair.  相似文献   

2.
3.
4.
The cell surface receptor Notch is required during Drosophila embryogenesis for production of epidermal precursor cells. The secreted factor Wingless is required for specifying different types of cells during differentiation of tissues from these epidermal precursor cells. The results reported here show that the full-length Notch and a form of Notch truncated in the amino terminus associate with Wingless in S2 cells and in embryos. In S2 cells, Wingless and the two different forms of Notch regulate expression of Dfrizzled 2, a receptor of Wg; hairy, a negative regulator of achaete expression; shaggy, a negative regulator of engrailed expression; and patched, a negative regulator of wingless expression. Analyses of expression of the same genes in mutant N embryos indicate that the pattern of gene regulations observed in vitro reflects regulations in vivo. These results suggest that the strong genetic interactions observed between Notch and wingless genes during development of Drosophila is at least partly due to regulation of expression of cuticle patterning genes by Wingless and the two forms of Notch.  相似文献   

5.
The mechanisms that regulate cell fate within the pronephros are poorly understood but are important for the subsequent development of the urogenital system and show many similarities to nephrogenesis in the definitive kidney. Dynamic expression of Notch-1, Serrate-1, and Delta-1 in the developing Xenopus pronephros suggests a role for this pathway in cell fate segregation. Misactivation of Notch signaling using conditionally active forms of either Notch-1 or RBP-J/Su(H) proteins prevented normal duct formation and the proper expression of genetic markers of duct cell differentiation. Inhibition of endogenous Notch signaling elicited the opposite effect. Taken together with the mRNA expression patterns, these data suggest that endogenous Notch signaling functions to inhibit duct differentiation in the dorsoanterior region of the anlage where cells are normally fated to form tubules. In addition, elevated Notch signaling in the pronephric anlage both perturbed the characteristic pattern of the differentiated tubule network and increased the expression of early markers of pronephric precursor cells, Pax-2 and Wilms' tumor suppressor gene (Wt-1). We propose that Notch signaling plays a previously unrecognized role in the early selection of duct and tubule cell fates as well as functioning subsequently to control tubule cell patterning and development.  相似文献   

6.
The different cell types of the vertebrate pancreas arise asynchronously during organogenesis. Beta-cells producing insulin, alpha-cells producing glucagon, and exocrine cells secreting digestive enzymes differentiate sequentially from a common primordium. Notch signaling has been shown to be a major mechanism controlling these cell-fate choices. So far, the pleiotropy of Delta and Jagged/Serrate genes has hindered the evaluation of the roles of specific Notch ligands, as the phenotypes of knock-out mice are lethal before complete pancreas differentiation. Analyses of gene expression and experimental manipulations of zebrafish embryos allowed us to determine individual contributions of Notch ligands to pancreas development. We have found that temporally distinct phases of both endocrine and exocrine cell type specification are controlled by different delta and jagged genes. Specifically, deltaA knock-down embryos lack alpha cells, similarly to mib (Delta ubiquitin ligase) mutants and embryos treated with DAPT, a gamma secretase inhibitor able to block Notch signaling. Conversely, jagged1b morphants develop an excess of alpha-cells. Moreover, the pancreas of jagged2 knock-down embryos has a decreased ratio of exocrine-to-endocrine compartments. Finally, overexpression of Notch1a-intracellular-domain in the whole pancreas primordium or specifically in beta-cells helped us to refine a model of pancreas differentiation in which cells exit the precursor state at defined stages to form the pancreatic cell lineages, and, by a feedback mediated by different Notch ligands, limit the number of other cells that can leave the precursor state.  相似文献   

7.
8.
Using the renal tubules of Drosophila as an example, we explore how cell specification leads to the morphogenetic movements that underlie the generation of tissue architecture. Taking two stages of development, we show first that the tubule cells are allocated by signalling between the endodermal and ectodermal compartments of the posterior gut. Activation of the Wnt pathway patterns the ectodermal anlage, resulting in the expression of tubule genes in a subset of cells and their eversion from the hindgut to form the tubule primordia. We argue that early gene expression directs these morphogenetic movements but not the complete programme of tubule differentiation. In the second example we show that the allocation of the mitogenic tip cell lineage in each tubule is required not only for the normal pattern of cell division but also for the stereotyped three-dimensional arrangement of the mature tubules. Analysis of mutants in which the tip cell lineage is misspecified reveals that both daughters of the tip cell progenitor are required for the tubules to navigate through the body cavity, so that the distal tips locate in their characteristic positions. We show that the regulator of Rac, Myoblast city is essential for this second morphogenetic process.  相似文献   

9.
A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.  相似文献   

10.
11.
Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate.   总被引:11,自引:0,他引:11  
BACKGROUND: The Notch receptor triggers a wide range of cell fate choices in higher organisms. In Drosophila, segregation of neural from epidermal lineages results from competition among equivalent cells. These cells express achaete/scute genes, which confer neural potential. During lateral inhibition, a single neural precursor is selected, and neighboring cells are forced to adopt an epidermal fate. Lateral inhibition relies on proteolytic cleavage of Notch induced by the ligand Delta and translocation of the Notch intracellular domain (NICD) to the nuclei of inhibited cells. The activated NICD, interacting with Suppressor of Hairless [Su(H)], stimulates genes of the E(spl) complex, which in turn repress the proneural genes achaete/scute. RESULTS: Here, we describe new alleles of Notch that specifically display loss of microchaetae sensory precursors. This phenotype arises from a repression of neural fate, by a Notch signaling distinct from that involved in lateral inhibition. We show that the loss of sensory organs associated with this phenotype results from a constitutive activation of a Deltex-dependent Notch-signaling event. These novel Notch alleles encode truncated receptors lacking the carboxy terminus of the NICD, which is the binding site for the repressor Dishevelled (Dsh). Dsh is known to be involved in crosstalk between Wingless and Notch pathways. CONCLUSIONS: Our results reveal an antineural activity of Notch distinct from lateral inhibition mediated by Su(H). This activity, mediated by Deltex (Dx), represses neural fate and is antagonized by elements of the Wingless (Wg)-signaling cascade to allow alternative cell fate choices.  相似文献   

12.
Cellular diversity is a fundamental characteristic of complex organisms, and the Drosophila CNS has proved an informative paradigm for understanding the mechanisms that create cellular diversity. One such mechanism is the asymmetric localization of Numb to ensure that sibling cells respond differently to the extrinsic Notch signal and, thus, adopt distinct fates (A and B). Here we focus on the only genes known to function specifically to regulate Notch-dependent asymmetric divisions: sanpodo and numb. We demonstrate that sanpodo, which specifies the Notch-dependent fate (A), encodes a four-pass transmembrane protein that localizes to the cell membrane in the A cell and physically interacts with the Notch receptor. We also show that Numb, which inhibits Notch signaling to specify the default fate (B), physically associates with Sanpodo and inhibits Sanpodo membrane localization in the B cell. Our findings suggest a model in which Numb inhibits Notch signaling through the regulation of Sanpodo membrane localization.  相似文献   

13.
Notch signaling augments T cell responsiveness by enhancing CD25 expression   总被引:9,自引:0,他引:9  
Notch receptors signal through a highly conserved pathway to influence cell fate decisions. Notch1 is required for T lineage commitment; however, a role for Notch signaling has not been clearly defined for the peripheral T cell response. Notch gene expression is induced, and Notch1 is activated in primary CD4(+) T cells following specific peptide-Ag stimulation. Notch activity contributes to the peripheral T cell response, as inhibition of endogenous Notch activation decreases the proliferation of activated T cells in a manner associated with the diminished production of IL-2 and the expression of the high affinity IL-2R (CD25). Conversely, forced expression of a constitutively active Notch1 in primary T cells results in increased surface expression of CD25, and renders these cells more sensitive to both cognate Ag and IL-2, as measured by cell division. These data suggest an important role for Notch signaling during CD4(+) T cell responses, which operates through augmenting a positive feedback loop involving IL-2 and its high affinity receptor.  相似文献   

14.
Recent evidence indicates that acquisition of artery or vein identity during vascular development is governed, in part, by genetic mechanisms. The artery-specific expression of a number of Notch signaling genes in mouse and zebrafish suggests that this pathway may play a role in arterial-venous cell fate determination during vascular development. We show that loss of Notch signaling in zebrafish embryos leads to molecular defects in arterial-venous differentiation, including loss of artery-specific markers and ectopic expression of venous markers within the dorsal aorta. Conversely, we find that ectopic activation of Notch signaling leads to repression of venous cell fate. Finally, embryos lacking Notch function exhibit defects in blood vessel formation similar to those associated with improper arterial-venous specification. Our results suggest that Notch signaling is required for the proper development of arterial and venous blood vessels, and that a major role of Notch signaling in blood vessels is to repress venous differentiation within developing arteries. Movies available on-line  相似文献   

15.
The adult external sense organ precursor (SOP) lineage is a model system for studying asymmetric cell division. Adult SOPs divide asymmetrically to produce IIa and IIb daughter cells; IIa generates the external socket (tormogen) and hair (trichogen) cells, while IIb generates the internal neuron and sheath (thecogen) cells. Here we investigate the expression and function of prospero in the adult SOP lineage. Although Prospero is asymmetrically localized in embryonic SOP lineage, this is not observed in the adult SOP lineage: Prospero is first detected in the IIb nucleus and, during IIb division, it is cytoplasmic and inherited by both neuron and sheath cells. Subsequently, Prospero is downregulated in the neuron but maintained in the sheath cell. Loss of prospero function leads to 'double bristle' sense organs (reflecting a IIb-to-IIa transformation) or 'single bristle' sense organs with abnormal neuronal differentiation (reflecting defective IIb development). Conversely, ectopic prospero expression results in duplicate neurons and sheath cells and a complete absence of hair/socket cells (reflecting a IIa-to-IIb transformation). We conclude that (1) despite the absence of asymmetric protein localization, prospero expression is restricted to the IIb cell but not its IIa sibling, (2) prospero promotes IIb cell fate and inhibits IIa cell fate, and (3) prospero is required for proper axon and dendrite morphology of the neuron derived from the IIb cell. Thus, prospero plays a fundamental role in establishing binary IIa/IIb sibling cell fates without being asymmetrically localized during SOP division. Finally, in contrast to previous studies, we find that the IIb cell divides prior to the IIa cell in the SOP lineage.  相似文献   

16.
The patterned branching in the Drosophila tracheal system is triggered by the FGF-like ligand Branchless that activates a receptor tyrosine kinase Breathless and the MAP kinase pathway. A single fusion cell at the tip of each fusion branch expresses the zinc-finger gene escargot, leads branch migration in a stereotypical pattern and contacts with another fusion cell to mediate fusion of the branches. A high level of MAP kinase activation is also limited to the tip of the branches. Restriction of such cell specialization events to the tip is essential for tracheal tubulogenesis. Here we show that Notch signaling plays crucial roles in the singling out process of the fusion cell. We found that Notch is activated in tracheal cells by Branchless signaling through stimulation of &Dgr; expression at the tip of tracheal branches and that activated Notch represses the fate of the fusion cell. In addition, Notch is required to restrict activation of MAP kinase to the tip of the branches, in part through the negative regulation of Branchless expression. Notch-mediated lateral inhibition in sending and receiving cells is thus essential to restrict the inductive influence of Branchless on the tracheal tubulogenesis.  相似文献   

17.
T Uemura  S Shepherd  L Ackerman  L Y Jan  Y N Jan 《Cell》1989,58(2):349-360
Neurons and support cells of each sensory organ in Drosophila embryos are most likely derived from a single precursor cell. This cell lineage is affected in numb mutants. Morphological alterations of sensory structures, as well as changes in the number of cells expressing cell type-specific markers, indicate that sensory neurons in numb mutant embryos are transformed into lineage-related nonneuronal support cells. Thus the numb gene controls the fate of progeny derived from sensory organ precursors. The numb gene has been isolated by the plasmid rescue method. The structure of its predicted product is discussed.  相似文献   

18.
We examined the role of Notch signaling on the generation of neurons and glia from neural stem cells by using neurospheres that are clonally derived from neural stem cells. Neurospheres prepared from Dll1(lacZ/lacZ) mutant embryos segregate more neurons at the expense of both oligodendrocytes and astrocytes. This mutant phenotype could be rescued when Dll1(lacZ/lacZ) spheres were grown and/or differentiated in the presence of conditioned medium from wild-type neurospheres. Temporal modulation of Notch by soluble forms of ligands indicates that Notch signaling acts in two steps. Initially, it inhibits the neuronal fate while promoting the glial cell fate. In a second step, Notch promotes the differentiation of astrocytes, while inhibiting the differentiation of both neurons and oligodendrocytes.  相似文献   

19.
Expression of a mouse atonal homologue, math1, defines cells with the potential to become sensory hair cells in the mouse inner ear (Science 284 (1999) 1837) and Notch signaling limits the number of cells that are permitted to adopt this fate (Nat. Genet. 21 (1999) 289; J. Neurocytol. 28 (1999) 809). Failure of lateral inhibition mediated by Notch signaling is associated with an overproduction of ear hair cells in the zebrafish mind bomb (mib) and deltaA mutants (Development 125 (1998a) 4637; Development 126 (1999) 5669), suggesting a similar role for these genes in limiting the number of hair cells in the zebrafish ear. This study extends the analysis of proneural and neurogenic gene expression to the lateral line system, which detects movement via clusters of related sensory hair cells in specialized structures called neuromasts. We have compared the expression of a zebrafish atonal homologue, zath1, and neurogenic genes, deltaA, deltaB and notch3, in neuromasts and the posterior lateral line primordium (PLLP) of wild-type and mib mutant embryos. We describe progressive restriction of proneural and neurogenic gene expression in the migrating PLLP that appears to correlate with selection of hair cell fate in maturing neuromasts. In mib mutants there is a failure to restrict expression of zath1 and Delta homologues in the neuromasts revealing similarities with the phenotype previously described in the ear.  相似文献   

20.
Yang Y  Zhu R  Bai J  Zhang X  Tian Y  Li X  Peng Z  He Y  Chen L  Ji Q  Chen W  Fang D  Wang R 《Experimental cell research》2011,(11):1640-1648
Numb was originally identified as an important cell fate determinant that is asymmetrically inherited during mitosis and controls the fate of sibling cells by inhibiting the Notch signaling pathway in neural tissue. The small intestinal epithelium originates from the division of stem cells that reside in the crypt, which further differentiate into goblet cells, absorptive cells, paneth cells, and enteroendocrine cells. However, Numb's involvement in the differentiation process of intestinal epithelium is largely unknown. In the present study, we confirm that both the Numb mRNA and protein isoforms are expressed in adult mouse intestinal mucosa. Numb protein is ubiquitously expressed throughout the crypt–villus axis of the small intestinal epithelium and is mainly localized to the cytoplasmic membrane. Down-regulation of endogenous Numb using RNA interference in cultured intestinal LS174T cells increased Notch signaling, leading to the up-regulation of Hes1 and the down-regulation of Hath1. Knockdown of Numb alleviated MUC2 protein expression and led to loss of the goblet cell phenotype in LS174Tl cells. Our results provide the first evidence that Numb, an important cell fate determinant, modulates intestinal epithelial cells towards the goblet cell phenotype by inhibiting the Notch signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号