首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The best culture medium composition for the production of bikaverin by Gibberella fujikuroi in shake-flasks, i.e. 100 g glucose l–1; 1 g NH4Cl l–1; 2 g rice flour l–1; 5 g KH2PO4 l–1 and 2.5 g MgSO4 l–1, was obtained through a fractional factorial design and then scaled-up to a fluidized bioreactor. The effects of carbon and nitrogen concentrations, inoculum size, aeration, flow rate and bead sizes on batch bikaverin production using immobilized G. fujikuroi in a fluidized bioreactor were determined by an orthogonal experimental design. Concentrations of up to 6.83 g bikaverin l–1 were obtained when the medium contained 100 g glucose l–1 and 1 g NH4Cl l–1 with an inoculum ratio of 10% v/v, an aeration rate of 3 volumes of air per volume of medium min–1, and a bead size of 3 mm. Based on dry weight, the bikaverin production was 30–100 times larger than found in submerged culture and approximately three times larger than reported for solid substrate fermentation.  相似文献   

2.
During L-lactic acid fermentation by Rhizopus oryzae, increasing the phosphate level in the fermentation medium from 0.1 g l–1 to 0.6 g l–1 KH2PO4 reduced the maximal concentration of L-lactic acid and fumaric acid from 85 g l–1 to 71 g l–1 and from 1.36 g l–1 to 0.18 g l–1, respectively; and it decreased the fermentation time from 72 h to 52 h. Phosphate at 0.40 g l–1 KH2PO4 was suitable for both minimizing fumaric acid accumulation and benefiting L-lactic acid production.  相似文献   

3.
Glutaminase-free l-asparaginase is known to be an excellent anticancer agent. In the present study, statistically based experimental designs were applied to maximize the production of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Nine components of the medium were examined for their significance on the production of l-asparaginase using the Plackett–Burman experimental design. The medium components, viz., glucose, l-asparagine, KH2PO4, and MgSO4·7H2O, were screened based on their high confidence levels (P < 0.04). The optimum levels of glucose, l-asparagine, KH2PO4, and MgSO4·7H2O were found to be 2.076, 5.202, 1.773, and 0.373 g L−1, respectively, using the central composite experimental design. The maximum specific activity of l-asparaginase in the optimized medium was 27.88 U mg−1 of protein, resulting in an overall 8.3-fold increase in the production compared to the unoptimized medium.  相似文献   

4.
The effects of tissue culture conditions and explant characteristics on direct somatic embryogenesis were studied on Oncidium `Gower Ramsey'. Embryo formation was significantly affected by explant position. Leaf tip segments had a significantly higher embryogenic response than other segments of leaves. Adaxial-side-up orientation significantly promoted embryogenesis in comparison with abaxial-side-up orientation. There was no significant effect of sucrose in a range of concentrations (10–60 g l–1). Modified 1/2-MS medium (containing 85 mg l–1 KH2PO4) supplemented with 170 mg l–1 NaH2PO4 significantly promoted direct somatic embryogenesis. Peptone at 0.5 mg l–1 gave significantly higher emrbyogenic response (80%) on leaf tips than control treatment (50%). The best response on direct embryo formation was obtained on the modified 1/2-MS medium supplemented with 10–20 g l–1 sucrose, 170 mg l–1 NaH2PO4 and 0.5 g l–1 peptone.  相似文献   

5.
The optimisation of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) fromPleurotus nebrodensis. The optimal temperature and initial pH for both mycelial growth and EPS production in shake flask cultures were 25 °C and 8.0, respectively. Maltose was found the most suitable carbon source for both mycelial biomass and EPS production. Yeast extract was favourable nitrogen source for both mycelial biomass and EPS production. Optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth and EPS production was as follows: 200 g l?1 bran, 25 g l?1 maltose, 3 g l?1 yeast extract, 1 g l?1 KH2PO4, 1 g l?1 MgSO4 7H2O. Under the optimal conditions, the mycelial biomass (4.13 g l?1) and EPS content (2.40 g l?1) ofPleurotus nebrodensis was 2.3 and 3.6 times compared to the control with basal medium respectively.  相似文献   

6.
Summary Spore production of Coniothyrium minitans was optimized by using response surface methodology (RSM), which is a powerful mathematical approach widely applied in the optimization of fermentation process. In the first step of optimization, with Plackett–Burman design, soluble starch, urea and KH2PO4 were found to be the important factors affecting C. minitans spore production significantly. In the second step, a 23 full factorial central composite design and RSM were applied to determine the optimal concentration of each significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the critical components for the maximum were obtained as follows: soluble starch 0.643 (36.43 g. l−1), urea −0.544 (3.91 g l−1) and KH2PO4 0.049 (1.02 g l−1) with a predicted value of maximum spore production of 9.94 × 109 spores/g IDM. Under the optimal conditions, the practical spore production was 1.04 × 1010 spores/g IDM. The determination coefficient (R2) was 0.923, which ensure an adequate credibility of the model.  相似文献   

7.
The effect of medium components (carbon, nitrogen, and mineral sources) and environmental factors (initial pH and temperature) for mycelial growth and exopolysaccharide (EPS) production in Sarcodon aspratus(Berk) S.lto TG-3 was investigated. The optimal temperature (25°C) and initial pH (5.0) for the EPS production in shake flask cultures of S. aspratus were determined using the two-dimensional contour plot. The most suitable carbon, nitrogen, and mineral sources for EPS production were glucose, yeast extract, CaCl2 and KH2PO4, respectively. Notably, the EPS production was significantly enhanced by supplementation of calcium ion. Subsequently, the optimum concentration of glucose (30gl–1), yeast extract (15gl–1), CaCl2 (1.1gl–1), and KH2PO4 (1.2gl–1) were determined using the orthogonal matrix method. The effects of nutritional requirement on the mycelial growth of S.aspratuswere in regular sequence of glucose>KH2PO4>yeast extract>CaCl2, and those on EPS production were in the order of glucose>yeast extract>CaCl2>KH2PO4. Under the optimal culture conditions, the maximum EPS concentration in a 5-l stirred-tank reactor was 2.68gl–1 after 4days of fermentation, which was 6-fold higher than that at a basal medium. The two-dimensional contour plot and orthogonal matrix method allowed us to find the relationship between environmental factors and nutritional requirement by determining optimal operating conditions for maximum EPS production in S.asparatus. The statistical experiments used in this work can be useful strategies for optimization of submerged culture processes for other mushrooms.  相似文献   

8.
A method for isolation of d-amino acid oxidase (DAAO) from disrupted Trigonopsis variabilis cells has been developed. In an aqueous two-phase system consisting of PEG6000 (220 g l–1), potassium phosphate (110 g l–1, K2HPO4 + KH2PO4 = 10.1:1, mol mol–1) and dl-methionine (11 g l–1), the major portion of cellular proteins (87%) was partitioned into the salt phase. By sequential extraction, 48% of DAAO was recovered in PEG phase, giving a yield of 211 U mg protein–1.  相似文献   

9.
Alcaligenes faecalis G utilized 95–97% of 5–15 g -caprolactam l–1 in 24–48 h over a pH range of 6–8.5 and at 23–40 °C, without complex nutrient requirement. In the absence of KH2PO4 and K2HPO4/MgSO4 in the medium, only 7.6% and 0.2% of 10 g caprolactam l–1 was utilized, respectively. The chemical oxygen demand (COD) of the wastewater of nylon-6 plant was mainly due to its caprolactam content. A. faecalis G decreased the caprolactam content and COD of the wastewater by 80–90% of the original in spite of the wastewater having higher caprolactam content (3600 mg l–1) and COD (7700 mg l–1) than those of any of the previous reports.  相似文献   

10.
Decolourization of Direct Red 80 (DR-80) by the white rot fungus Phanerochaete chrysosporium MTCC 787 was investigated employing sequential design of experiments. Media components for growing the white rot fungus were first screened using Plackett-Burman design and then optimized using response surface methodology (RSM), which resulted in enhancement in the efficiency of dye removal by the fungus. For determining the effect of media constituents on the dye removal, both percent dye decolourization and specific dye removal due to maximum enzyme activity were chosen as the responses from the experiments, and the media constituents glucose, veratryl alcohol, KH2PO4, CaCl2 and MgSO4 were screened to be the most effective with P values less than 0.05. Central composite design (CCD) followed by RSM in the optimization study revealed the following optimum combinations of the screened media constituents: glucose, 11.9 g l−1; veratryl alcohol, 12.03 mM; KH2PO4, 23.08 g l−1; CaCl2, 2.4 g l−1; MgSO4, 10.47 g l−1. At the optimum settings of the media constituents, complete dye decolourization (100% removal efficiency) and a maximum specific dye removal due to lignin peroxidase enzyme of 0.24 mg U−1 by the white rot fungus were observed.  相似文献   

11.
Succinic acid, a four-carbon diacid, has been the focus of many research projects aimed at developing more economically viable methods of fermenting sugar-containing natural materials. Succinic acid fermentation processes also consume CO2, thereby potentially contributing to reductions in CO2 emissions. Succinic acid could also become a commodity used as an intermediate in the chemical synthesis and manufacture of synthetic resins and biodegradable polymers. Much attention has been given recently to the use of microorganisms to produce succinic acid as an alternative to chemical synthesis. We have attempted to maximize succinic acid production by Actinobacillus succinogenes using an experimental design methodology for optimizing the concentrations of the medium components. The first experiment consisted of a 24−1 fractional factorial design, and the second entailed a Central Composite Rotational Design so as to achieve optimal conditions. The optimal concentrations of nutrients predicted by the model were: NaHCO3, 10.0 g l−1; MgSO4, 3.0 g l−1; yeast extract, 2.0 g l−1; KH2PO4. 5.0 g l−1; these were experimentally validated. Under the best conversion conditions, as determined by statistical analysis, the production of succinic acid was carried out in an instrumented bioreactor using sugarcane bagasse hemicellulose hydrolysate, yielding a concentration of 22.5 g l−1.  相似文献   

12.
Optimization of cultivation medium composition for isoamylase production   总被引:1,自引:0,他引:1  
Summary The medium composition for production of isoamylase by Pseudomonas amyloderamosa JD210 was optimized using response surface methodology. The factors chosen for optimization were maltose, soybean protein hydrolysate (SPH), isoleucine, proline, KH2PO4 and MgSO4. Fractional factorial designs (FFD) and the path of steepest ascent were effective in searching for the major factors and optimum medium composition. By a 26–1 FFD, supplementary isoleucine was shown to have a negative effect on enzyme production. The effects of the other five factors were further investigated by a central composite design and the optimum composition was found to be 1.10% maltose, 0.13% SPH, 0.15% proline, 0.38% KH2PO4, and 0.05% MgSO4. When the strain was cultivated in the optimum medium, enzyme production increased 60% compared with ordinary medium. Proline was verified as being a significant factor in promoting enzyme production.  相似文献   

13.
The Doehlert experimental design was used to optimize the production of mycelial biomass and exopolymer from Hericium erinaceus CZ-2 in this study. Statistical analysis showed that the linear and quadric terms of 3 variables: corn flour, yeast extract, and corn steep liquor had significant effects. The optimized combination of these 3 variables was confirmed through validation experiments. The optimal conditions for higher production of mycelial biomass (19.92 g/L) were estimated when the media composition concentrations were set as: 30.85 g/L, corn flour; 2.81 g/L, yeast extract; 16.9 mL/L, corn steep liquor; 10 g/L, glucose; 1 g/L, KH2PO4; and 0.5 g/L, MgSO4·7H2O; while a maximal exo-polymer yield (1.653 g/L) could be achieved when setting concentrations of: 32.71 g/L, corn flour; 2.35 g/L, Yeast extract; 14.42 mL/L, Corn steep liquor; 10 g/L, glucose; 1 g/L, KH2PO4; and 0.5 g/L, MgSO4·7H2O. The upscale production was also investigated using a 15 L fermentor using the optimized medium.  相似文献   

14.
Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition for spore production. We first used one-factor-at-a-time design to identify corn flour and yeast extract as the best carbon and nitrogen sources for the spore production of V. lecanii. Then, we used two-level fractional factorial design to confirm corn flour, yeast extract, and KH2PO4 as important factors significantly affecting V. lecanii spore production. Finally, we optimized these selected variables using a central composite design and response surface method. The optimal medium composition was (grams per liter): corn flour 35.79, yeast 8.69, KH2PO4 1.63, K2HPO4 0.325, and MgSO4 0.325. Under optimal conditions, spore production reached 1.1 × 1010 spores/g dried carrier, much higher than that on wheat bran (1.7 × 109 spores/g initial dry matter).  相似文献   

15.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

16.
Optimization of medium composition for the production of exopolysaccharides (EPS) from Phellinus baumii Pilát in submerged culture and the immuno-stimulating activity of EPS were carried out. Firstly, the medium components having significant effect on EPS production were screened out to be glucose, yeast extract and diammonium oxalate monohydrate by using a 2(7−3) fractional factorial design. Secondly, the concentrations of the three factors were optimized using central composite design in response surface methodology. As results, a quadratic model was found to fit for EPS production, and the optimal medium composition was determined as following (g/l): 34.12 glucose, 4 peptone, 5.01 yeast extract, 0.88 diammonium oxalate monohydrate, 0.75 MgSO4 and 1 KH2PO4 and 0.0075 thiamine (VB1). A yield of 2.363 ± 0.04 g/l for EPS was observed in verification experiment. Finally, EPS from P. baumii Pilát was found to have direct immuno-stimulating activity in vitro on splenocyte proliferative response and acid phosphatase activity in peritoneal macrophages in a dose-dependent manner.  相似文献   

17.
Mango peel is one of the major wastes from fruit processing industries, which poses considerable disposal problems and ultimately leads to environmental pollution. The objective of the current research was to determine the significant parameters on the production of polygalacturonase from mango peel which is a major industrial waste. Solid state culture conditions for polygalacturonase production by Fusarium moniliforme from dried mango peel powder were optimized by Taguchi’s L-18 orthogonal array experimental design methodology. Eight fungal metabolic influencing variables, viz. temperature, mango peel, inoculum, peptone, ammonium nitrate (NH4NO3), magnesium sulphate (MgSO4), zinc sulphate (ZnSO4) and potassium dihydrogen phosphate (KH2PO4) were selected to optimize polygalacturonase production. The optimized parameters composed of temperature (30°C), mango peel (6.5%, g, w/v), inoculum (8%, ml, v/v), peptone (1%, g, w/v), NH4NO3 (0.60%, g, w/v), MgSO4 (0.05%, g, w/v), ZnSO4 (0.06%, g, w/v) and KH2PO4 (0.4%, g, w/v). Based on the influence of interaction of fermentation components of fermentation, these could be classified as the least significant and the most significant at individual and interaction levels. The temperature, inoculum level, mango peel substrate and KH2PO4 showed maximum production impact at optimized conditions. From the optimized conditions the polygalacturonase activity was maximized to 43.2 U g−1.  相似文献   

18.
Summary Optimization of medium composition and pH for chitinase production by the Alcaligenes xylosoxydans mutant EMS33 was carried out in the present study and the optimized medium composition and conditions were evaluated in a fermenter. The medium components screened initially using Plackett–Burman design were (NH4)2SO4, MgSO4 7H2O, KH2PO4, yeast extract, Tween 20 and chitin in shake flask experiments. The significant medium components identified by the Plackett–Burman method were MgSO4 7H2O, Tween 20 and chitin. Central composite response surface methodology was applied to further optimize chitinase production. The optimized values of MgSO4 7H2O, Tween 20, chitin and pH were found to be 0.6 g/l, 0.05 g/l, 11.5 g/l and 8.0, respectively. Chitinase and biomass production of Alcaligenes xylosoxydans EMS33, was studied in a 2-l fermenter containing (g/l): chitin, 11.5; yeast extract, 0.5; (NH4)2SO4, 1; MgSO4 7H2O, 0.6; KH2PO4, 1.36 and Tween 20, 0.05. The highest chitinase production was 54 units/ml at 60 h and pH 8.0 when the dissolved O2 concentration was 60%, whereas the highest biomass production was achieved at 36 h and pH 7.5 without any dissolved O2 control.  相似文献   

19.
A mutant strain of Penicillium citrinum grown in a chemically-defined production medium, yielded 145 mg compactin l–1. The medium also facilitated spectrophotometric analysis of compactin. Addition of KH2PO4in the production medium did not increase the compactin production, while addition of a surfactant, Tween 80, increased compactin to 175 mg l–1. Inoculation with 107 spores ml–1 and initial pH of 6.5–7 were the most suitable for compactin production.  相似文献   

20.
S-Adenosyl-l-methionine (AdoMet) was produced by a mutant strain Kluyveromyces lactis AM-65 grown on whey. A full factorial design method of three factors – (NH4)2SO4 (factor x 1), corn steep liquor (factor x 2) and l-methionine (factor x 3) on three levels – was used to determine the optimal medium conditions for the production of AdoMet. A time course shake-flask experiment in optimal whey medium (x 1=3.1 g l–1, x 2=12.7 g l–1, x 3=4.6 g l–1) was also carried out and the results confirmed the results of the factorial design and subsequent quadratic modelling and optimization of AdoMet production which reached 90 mg g–1 cell dry wt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号