首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, response surface methodology was employed to optimize the medium compositions for the production of exopolysaccharides (EPS) from endophytic bacterium Paenibacillus polymyxa EJS-3. Firstly, fractional factorial design was applied to evaluate the effects of different components in the medium. It was found that sucrose, yeast extract and CaCl2 influenced significantly the production of EPS. Then, steepest ascent method and central composite design were used to optimize the concentrations of the three variables. As results, the optimal medium compositions were determined as following (g/L): sucrose 188.2, yeast extract 25.8, K2HPO4 5 and CaCl2 0.34, with a corresponding yield of 35.26 g/L. In addition, both polysaccharide fractions (EPS-1 and EPS-2) from crude EPS were mainly composed of (2 → 6)-linked β-d-fructofuranosyl residues backbone with (2 → 1)-linked branches based on their structural characterization by FT-IR spectroscopy, methylation analysis and 13C NMR spectroscopy.  相似文献   

2.
The effect of medium components (carbon, nitrogen, and mineral sources) and environmental factors (initial pH and temperature) for mycelial growth and exopolysaccharide (EPS) production in Sarcodon aspratus(Berk) S.lto TG-3 was investigated. The optimal temperature (25°C) and initial pH (5.0) for the EPS production in shake flask cultures of S. aspratus were determined using the two-dimensional contour plot. The most suitable carbon, nitrogen, and mineral sources for EPS production were glucose, yeast extract, CaCl2 and KH2PO4, respectively. Notably, the EPS production was significantly enhanced by supplementation of calcium ion. Subsequently, the optimum concentration of glucose (30gl–1), yeast extract (15gl–1), CaCl2 (1.1gl–1), and KH2PO4 (1.2gl–1) were determined using the orthogonal matrix method. The effects of nutritional requirement on the mycelial growth of S.aspratuswere in regular sequence of glucose>KH2PO4>yeast extract>CaCl2, and those on EPS production were in the order of glucose>yeast extract>CaCl2>KH2PO4. Under the optimal culture conditions, the maximum EPS concentration in a 5-l stirred-tank reactor was 2.68gl–1 after 4days of fermentation, which was 6-fold higher than that at a basal medium. The two-dimensional contour plot and orthogonal matrix method allowed us to find the relationship between environmental factors and nutritional requirement by determining optimal operating conditions for maximum EPS production in S.asparatus. The statistical experiments used in this work can be useful strategies for optimization of submerged culture processes for other mushrooms.  相似文献   

3.
The anti-diabetic activities of the exopolysaccharides (EPS) produced by submerged mycelial culture of two different mushrooms, Tremella fuciformis and Phellinus baumii, in ob/ob mice were investigated. All the animals were randomly divided into three groups with seven animals in each group: The control group received 0.9% NaCl solution; the diabetic groups were treated with EPS from T. fuciformis (Tf EPS) and P. baumii (Pb EPS) at the level of 200 mg/kg body weight using an oral zoned daily for 52 days. The plasma glucose levels in the EPS-fed mice were substantially reduced by about 52% (Tf EPS) and 32% (Pb EPS), respectively, as compared to control mice. The results of oral glucose tolerance test (OGTT) revealed that both EPS-fed groups significantly increased the glucose disposal after 52 days of EPS treatments. Furthermore, higher food efficiency ratios and reduced blood triglyceride levels were observed in the EPS-treated groups. Because peroxisome proliferator-activated receptor gamma (PPAR-γ) is indeed a key regulator of insulin action, we investigated the expression pattern of adipose tissue PPAR-γ messenger RNA (mRNA) and plasma levels of PPAR-γ. It was revealed that PPAR-γ was significantly activated in response to EPS treatments. The results suggested that both EPS exhibited considerable hypoglycemic effect and improved insulin sensitivity possibly through regulating PPAR-γ-mediated lipid metabolism. Our results indicated that two mushroom-derived EPS might be developed as potential oral hypoglycemic agents or functional foods for the management of non-insulin-dependent diabetes mellitus.  相似文献   

4.
Summary Coriolus versicolor is a medicinal fungus producing exopolysaccharides (EPS). Five well-defined culture media were studied to select the medium that maximizes production of EPS by C. versicolor. Biomass, reducing sugars and EPS concentrations along with the rheological behaviour of the broth were followed during fermentations lasting 9 days. The yeast malt extract medium (YM) was shown to yield the highest production of EPS. Fermentation conditions with YM medium were further investigated to optimize EPS production by C. versicolor. An experimental design to do this was adopted, in which the effects of pH and initial substrate concentration were considered. The effects of initial glucose concentration (5, 15 and 25 g l−1) and pH (4.0, 5.5 and 7.0) were evaluated. The initial glucose concentration was found to be the most important factor in EPS production and also cell growth.  相似文献   

5.
The ability of the Rhizobium D1 10 species, which was isolated from the root nodules of the leguminous forest tree Dalbergia lanceolaria, for the production of extracellular polysaccharides (EPS) was investigated. High amounts of EPS (765 μg/mL) were produced by the bacteria (Rhizobium D1 10) in yeast extract mannitol medium. Both growth and EPS production started simultaneously, but the EPS production was at its maximum in the stationary phase of growth at 32 h. The EPS production was maximal when the medium was supplemented with mannitol (2 %), thiamine hydrochloride (1 μg/mL) and KNO3 (0.1 %), which was accompanied by a great increase in the production compared to the control. The EPS contained xylose, rhamnose, glucose, galactose and arabinose. The possible role of rhizobial EPS production in root nodule symbiosis is discussed.  相似文献   

6.
An extracellular polysaccharide (EPS) was produced by a Rhizobium sp. isolated from the root nodules of Vigna mungo (L.) Hepper. Maximum EPS production (346 mg l−1) was when the yeast extract basal medium was supplemented with mannitol (1%), biotin (1.5 mg l−1) and asparagine (0.3%). Ribose (53%) and mannose (47%) were the principle monomers of the EPS. Chemical, chromatographic and spectroscopic analysis showed that this polymer, which has Man4Rib1 as an oligomeric subunit, has an apparent molecular mass of 750 kDa.  相似文献   

7.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

8.
Maximum activity (8.9 IU/ml) of rifamycin oxidase in Curvularia lunata, grown in shake-flask culture at 28°C and pH 6.5, was after 96 h. Nearly all the glucose was used in 72 h. An initial culture pH of 6.5 and 28°C were optimum for the growth and enzyme production. Among various carbon and organic nitrogen sources, carboxymethylcellulose and peptone were the most effective for enzyme yield. The rate of enzyme production was enhanced when yeast extract was also added to the medium. The optimum medium for the production of rifamycin oxidase contained 10 g each of yeast extract, peptone and carboxymethylcellulose/l and 0.04% (NH4)2SO4.The author is with the Biochemical Engineering Research and Process Development Centre, Institute of Microbial Technology, Post Box 1304, Sector 39-A, Chandigarh 160 014, India  相似文献   

9.
In the present study, the production of exopolysaccharides (EPS) by 13 strains of Lactobacillus and 6 strains of Bifidobacterium in a chemical defined medium (CDM) supplemented with 30 g lactose/l was first compared. The highest EPS production of the Lactobacillus strains was found in L. salivarius BCRC 14759 while among the Bifidobacterium strains examined, B. bifidum BCRC 14615 showed the highest EPS production. Analyzes of the effect of lactose concentration and cultivation temperature on EPS production revealed that L. salivarius produced the highest amount of EPS (45.3 mg/l) in CDM supplemented with 5 g lactose/l at 40°C while B. bifidum produced the highest EPS (17.0 mg/l) in CDM supplemented with 40 g lactose/l at 35°C. α-Phosphoglucomutase, UDP-glucose pyrophosphorylase and UDP-galactose-4-epimerase exhibited a markedly notable activity compared with other enzymes examined in the cell extract of both test organisms. This indicates their possible involvement in the biosynthesis of EPS.  相似文献   

10.
The Rhizobium sp., isolated from the root nodules of the leguminous fodder herb Melilotus alba, produced large amounts of extracellular polysaccharides (EPS) (963.5 μg/ml) in a yeast extract mannitol medium. Growth and EPS production started simultaneously, but EPS production reached its maximum during the stationary phase of growth of the bacteria, at 20 hours. EPS production was increased with all of the thirteen sugars tested. Different nitrogen sources, such as nitrates, glutamic acid, casamino acid and L-asparagine, increased the EPS production although it was inhibited by glycine, nitrite and ammonium salts. Among the vitamins and metal ions, only pyridoxal phosphate and ZnSO4 promoted EPS production. Attempts were made to optimize the cultural requirements for growth and maximum EPS production. Maximum EPS production (1457.0 μg/ml) was obtained when the medium was supplemented with glucose (1%), pyridoxal phosphate (2 μ g/ml), ZnSO4 × 7 H2O (10 μg/ml) and glutamic acid (0.1%). Under these conditions, the production was increased by 254.3% compared to the control. The EPS contained arabinose, xylose and rhamnose monomers. The presence of arabinose and xylose in the EPS produced by a Rhizobium sp. was uncommon.  相似文献   

11.
The exopolysaccharide (EPS) production by psychrophilic Antarctic yeast Sporobolomyces salmonicolor AL1 reached the maximum yield in medium containing sucrose (50 g/L) and diammonium sulfate (2.5 g/L) after a 5-d fermentation (5.64 g/L) at 22 °C, the dynamic viscosity of the culture broth reaching (after 5 d) 15.4 mPa s. EPS showed a mannan-like structure and high molar mass, and did not affect cellular viability and proliferation of murine macrophages. It exhibited also a protective effect against the toxic activity of Avarol.  相似文献   

12.
Although many studies have examined the influence of culture conditions on the production and composition of polysaccharides, little is known about the factors influencing the quality of exopolysaccharides (EPS). In this work we studied the effect of yeast extract on the production, composition and molecular weight of the EPS zooglan produced by Zoogloea ramigera 115SLR. This bacterium was grown on a new completely defined synthetic medium and on a medium containing yeast extract. Growth and polysaccharide production performances were comparable on the two media with a glucose to exopolysaccharide conversion yield of 35% (g/g). The polysaccharides produced on these two media have an identical composition but a different molecular weight and molecular weight distribution. The yeast extract medium leads to a more homogeneous polysaccharide solution. Received: 12 June 1998 / Received revision: 19 September 1998 / Accepted: 11 October 1998  相似文献   

13.
Bioremediation, a strategy mediated by microorganisms, is a promising way used in the degradation or removal of organic contaminants from soil or aquatic system. Exopolysaccharide (EPS) which was produced by a variety of Gram-negative bacteria has been demonstrated to be a potential bioemulsifier used in the degradation of hydrocarbons. In the present study, attempts were made to optimize the production of EPS from our newly isolates by adjusting the culture conditions and medium components. Besides, the performance of diesel oil emulsification using partially purified EPS derived from different conditions was also demonstrated. Out of 40 root nodulating bacteria the better emulsifying abilities were recorded from three strains namely Rhizobium miluonense CC-B-L1, Burkholderia seminalis CC-IDD2w and Ensifer adhaerens CC-GSB4, as can be seen from their emulsification index (E24) 66, 64 and 60%, respectively. These three strains produced 212, 203 and 198 mg l−1 of EPS, respectively, in yeast extract mannitol (YEM) medium. After modifying culture conditions, better performances can be achieved from these three strains, with increases of 21.7, 21.4, 16.7% in the EPS production and 12.1, 10.9, 8.3% in E24, respectively. When considered for strain CC-B-L1 and CC-IDD2w, the addition of 1.5% (v/v) of mannitol and 0.1% (v/v) of asparagine in YEM enhanced 42.9 and 34.7% in EPS production along with 28.8 and 37.5% higher in E24. The supplement of 2.0% (v/v) glucose and 0.2% (v/v) asparagine in YEM increased 65.2% of EPS and 38.3% of E24 in strain CC-GSB4. This is the first report demonstrating the optimization of diesel emulsification by EPS from root nodulating isolates, and these microbial agents might be used in the remediation of hydrocarbon contaminated soils in a near future.  相似文献   

14.
Response surface methodology (RSM) was applied to optimize the critical medium ingredients of Agaricus blazei. A three-level Box–Behnken factorial design was employed to determine the maximum biomass and extracellular polysaccharide (EPS) yields at optimum levels for glucose, yeast extract (YE), and peptone. A mathematical model was then developed to show the effect of each medium composition and its interactions on the production of mycelial biomass and EPS. The model predicted the maximum biomass yield of 10.86 g/l that appeared at glucose, YE, peptone of 26.3, 6.84, and 6.62 g/l, respectively, while a maximum EPS yield of 348.4 mg/l appeared at glucose, YE, peptone of 28.4, 4.96, 5.60 g/l, respectively. These predicted values were also verified by validation experiments. The excellent correlation between predicted and measured values of each model justifies the validity of both the response models. The results of bioreactor fermentation also show that the optimized culture medium enhanced both biomass (13.91 ± 0.71 g/l) and EPS (363 ± 4.1 mg/l) production by Agaricus blazei in a large-scale fermentation process.  相似文献   

15.
Spore-forming Bacillus sp. has been extensively studied for their probiotic properties. In this study, an acid-treated rice straw hydrolysate was used as carbon source to produce the spores of Bacillus coagulans. The results showed that this hydrolysate significantly improved the spore yield compared with other carbon sources such as glucose. Three significant medium components including rice straw hydrolysate, MnSO4 and yeast extract were screened by Plackett–Burman design. These significant variables were further optimized by response surface methodology (RSM). The optimal values of the medium components were rice straw hydolysate of 27% (v/v), MnSO4 of 0·78 g l−1 and yeast extract of 1·2 g l−1. The optimized medium and RSM model for spore production were validated in a 5 l bioreactor. Overall, this sporulation medium containing acid-treated rice straw hydrolysate has a potential to be used in the production of B. coagulans spores.  相似文献   

16.
Gene cloning, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa were investigated in this paper. A lipase gene with whole ORF encoding 215 amino acids was obtained by PCR, protein domain prediction suggested that the deduced lipase belongs to α/β hydrolases family. Based on single factor Seriatim-Factorial test and Plackett–Burman experimental design, the optimal medium consisted of (per l) 12.5 ml maize oil, 5.0 g beef extract, 2.0 g PO4 3− (0.6 g KH2PO4, 1.4 g K2HPO4), 17.15 g Mg2+, 5.0 g yeast extract, 2.282 g CaCl2 and 5.0 ml Tween80 with artificial sea water. Using this optimum medium, lipase activity and cell concentration were increased by 3.54- and 1.31-fold over that of the basal medium, respectively. This lipase showed tolerance to high salinity, pH and temperature. About 10–20% methanol exhibited a stimulatory effect on the lipase activity, while activity was inhibited by 30–40% methanol, 2-propanol, DMSO, and ethanol. This study provides a valuable resource for marine lipase production and extends our understanding of the possible role of sponge-associated bacteria in the biotransformation of chemical compounds for the sponge host.  相似文献   

17.
Effect of medium composition and culture conditions on agarase production by Agarivorans albus YKW-34 was investigated in shake flasks. The most suitable carbon source, nitrogen source, and culture temperature were agar, yeast extract, and 25 °C, respectively, for agarase production by one-factor-at-a-time design. The nutritional components of the medium and culture conditions were analyzed by Plackett–Burman design. Among the nine factors studied, agar, yeast extract, and initial pH had significant effects on agarase production (p < 0.05). The optimum levels of these key variables were further determined using a central composite design. The highest agarase production was obtained in the medium consisting of 0.23% agar and 0.27% yeast extract at initial pH 7.81. The whole optimization strategy enhanced the agarase production from 0.23 U/ml to 0.87 U/ml. The economic medium composition and culture condition as well as the dominant occupation of agarase with high activity in culture fluid enlighten the potential application of A. albus YKW-34 for the production of agarase.  相似文献   

18.
The production, characterization and antioxidant activities in vitro of exopolysaccharides (EPS) from endophytic bacterium Paenibacillus polymyxa EJS-3 were investigated. For EPS production, the preferable culture conditions were 24 °C and pH 8 for 60 h with sucrose and yeast extract as the carbon and nitrogen sources, respectively. Notably, sucrose concentration was the prominent factor, and the maximum yield of EPS (22.82 g/L) was obtained at a sucrose concentration of 160 g/L. The crude EPS was purified by chromatography of DEAE-52 and Sephadex G-100, affording EPS-1 and EPS-2 with molecular weights of 1.22 × 106 and 8.69 × 105 Da, respectively. They were composed of mannose, fructose and glucose in a molar ratio of 2.59:29.83:1 and 4.23:36.59:1, respectively. In addition, both crude and purified EPS showed strong scavenging activities on superoxide and hydroxyl radicals, and their antioxidant activities decreased in the order of crude EPS > EPS-2 > EPS-1.  相似文献   

19.
A newly isolated halotolerant Bacillus sp. VITP4 was investigated for the production of extracellular protease. 16S rRNA gene analysis identified it as Bacillus aquimaris. Enzyme secretion corresponded with growth (Gt, 38 min) in the basal Zobell medium, reaching a maximum during stationary phase (630 U/ml, 48 h). Protease production was investigated in different salt concentrations (0–4 M). While growth was optimum in the basal medium, higher levels of protease activity were observed in 0.5 M salt medium (728 U/ml, 48 h) and 1 M salt medium (796 U/ml, 78 h) with 21% and 32% increase in production, respectively. Salt concentrations above 2.5 M did not support bacterial growth. The optimum pH and temperature for production were pH 7.5 and 37 °C, respectively. A combination of peptone and yeast extract yielded optimum protease secretion. Inorganic nitrogen sources proved to be less favourable. Production was reduced in the presence of readily available carbon sources owing to catabolic repression. Effect of various salts (1–6%) indicated favourable bacterial growth in these conditions for producing proteolytic molecules with increased activity. The study assumes significance in the ability of the halotolerant bacterium to survive in a wide range of salinity and yield optimum levels of extracellular protease.  相似文献   

20.
The suitability of using a simple brewer's yeast extract (BYE), prepared by autolysis of complete beer slurry, for growth and sporulation of Bacillus thuringiensis kurstaki was studied in baffled shake flasks. In a standard buffered medium with 2.5% (w/v) glucose and 1% (w/v) brewer's yeast extract, growth of B. t. kurstaki resulted in a low biomass production with considerable byproduct formation, including organic acids and a concomitant low medium pH, incomplete glucose utilization and marginal sporulation, whereas growth in the same medium with a commercial laboratory-grade yeast extract (Difco) resulted in a high biomass concentration, complete glucose utilization, relatively low levels of byproducts and complete sporulation (2.6 × 109 spores/ml). When glucose was left out of the medium, however, growth parameters and sporulation were comparable for BYE and commercial yeast extract, but absolute biomass levels and spore counts were low. Iron was subsequently identified as a limiting factor in BYE. After addition of 3 mg iron sulphate/l, biomass formation in BYE-medium more than doubled, low byproduct formation was observed, and complete sporulation occurred (2.8 × 109spores/ml). These data were slightly lower than those obtained in media with commercial yeast extract (3.6 × 109spores/ml), which also benefited, but to a smaller extent, from addition of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号