首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.  相似文献   

2.
We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.  相似文献   

3.
Purified DNA fragments are used for different purposes in Molecular Biology and they can be prepared by several procedures. Most of them require a previous electrophoresis of the DNA fragments in order to separate the band of interest. Then, this band is excised out from an agarose or acrylamide gel and purified by using either: binding and elution from glass or silica particles, DEAE-cellulose membranes, "crush and soak method", electroelution or very often expensive commercial purification kits. Thus, selecting a method will depend mostly of what is available in the laboratory. The electroelution procedure allows one to purify very clean DNA to be used in a large number of applications (sequencing, radiolabeling, enzymatic restriction, enzymatic modification, cloning etc). This procedure consists in placing DNA band-containing agarose or acrylamide slices into sample wells of the electroeluter, then applying current will make the DNA fragment to leave the agarose and thus be trapped in a cushion salt to be recovered later by ethanol precipitation.  相似文献   

4.
Aims:  To compare three methods for DNA extraction from Mycobacterium bovis , Mycobacterium tuberculosis and Mycobacterium avium subsp. avium .
Methods and Results:  The DNA was extracted from mycobacterial cultures using enzymatic extraction, combined bead beating and enzymatic extraction and cetyltrimethylammonium bromide (CTAB) extraction. The yield and quality of DNA were compared by spectrophotometry, agarose gel electrophoresis, restriction endonuclease analysis and PCR. The combined bead beating and enzymatic extraction method yielded more DNA. However, that method produced some sheared DNA, visible either by agarose gel electrophoresis or by restriction endonuclease analysis. All methods were appropriate for PCR amplification of a 123 bp fragment of IS 6110 in M. bovis and M. tuberculosis , and of a 1700 bp fragment of FR300 region in M. avium avium .
Conclusions:  Combined bead beating and enzymatic extraction method was the most efficient and easy method for extracting DNA from bacteria of the M. tuberculosis complex.
Significance and Impact of the Study:  The results reveal important differences among the DNA extraction methods for mycobacteria, which are relevant for the success of further downstream molecular analysis.  相似文献   

5.
三种粪便总DNA提取方法的比较   总被引:3,自引:1,他引:2  
目的比较不同粪便总DNA提取方法对肠道菌群多样性研究的影响。方法采用Bead beating法、化学裂解法和QIAamp DNA Stool Mini Kit提取同一份人粪便样品的总DNA,对比3种方法的DNA得率和16S rRNA基因V3区的变性梯度凝胶电泳(DGGE)图谱。结果Bead beating法的DNA得率约是其他2种方法的2倍;3种方法得到的DGGE图谱的Dice相似性为60%~70%,2条优势条带只出现在Bead beating法图谱中。在2~5min的Bead beating法击打时间里,DNA得率随击打时间的延长有一定的增加,但DGGE图谱无显著变化。结论不同的DNA提取方法会影响菌群的多样性分析。比较其他2种方法,Bead beating的裂解效率更高,能够检测到更多种类的细菌,更合适肠道菌群组成的分子研究。  相似文献   

6.
Five different DNA extraction methods were evaluated for their effectiveness in recovering PCR templates from the conidia of a series of fungal species often encountered in indoor air. The test organisms were Aspergillus versicolor, Penicillium chrysogenum, Stachybotrys chartarum, Cladosporium herbarum and Alternaria alternata. The extraction methods differed in their use of different cell lysis procedures. These included grinding in liquid nitrogen, grinding at ambient temperature, sonication, glass bead milling and freeze-thawing. DNA purification and recovery from the lysates were performed using a commercially available system based on the selective binding of nucleic acids to glass milk. A simple quantitative competitive polymerase chain reaction (QC-PCR) assay was developed for use in determining copy numbers of the internal transcribed spacer (ITS) regions of the ribosomal RNA operon (rDNA) in the total DNA extracts. These quantitative analyses demonstrated that the method using glass bead milling was most effective in recovering PCR templates from each of the different types of conidia both in terms of absolute copy numbers recovered and also in terms of lowest extract to extract variability. Calculations of average template copy yield per conidium in this study indicate that the bead milling method is sufficient to support the detection of less than ten conidia of each of the different organisms in a PCR assay.  相似文献   

7.
We have developed a simple, reliable, and rapid method for recovering DNA from agarose gels. While many methods for DNA extraction have already been described, few provide quantitative recovery of large DNA molecules. These procedures generally require costly apparatus, extended elution times, or considerable handling of the sample after elution. Our method employs a novel electroelution chamber constructed from acrylic plastic. Gel slices containing DNA are placed in the chamber between platinum electrodes. Voltage is applied and a continuous flow of buffer sweeps the eluted DNA from the chamber into an external receptacle. Elution is complete in 7 min. Concentrated DNA is obtained by butanol extraction and alcohol precipitation in 1 h. Recoveries, quantitated by counting radiolabeled DNA or by densitometry of analytical gels, were 94 to 100% for fragments of 4 to 50 kb. The eluted DNA was undegraded and could be digested with restriction enzymes, ligated, end-labeled, or used to transform cells as efficiently as noneluted DNA. Complete elution of a 100-kb plasmid, a 194-kb concatemer of bacteriophage lambda, and of 440- and 550- chromosomes of Saccharomyces cerevisiae was also achieved using the same process. This method is suitable for routine use in a wide range of cloning applications, including the electrophoretic isolation of large DNA molecules.  相似文献   

8.
A rapid and inexpensive method for the electroelution of DNA fragments from agarose gels is described. DNA fragments were separated by agarose gel electrophoresis and visualized by staining with ethidium bromide. Selected DNA fragments were placed into electroeluter tubes capped with dialysis membrane and electroeluted into a small volume of buffer using a conventional horizontal gel electrophoresis apparatus. The method successfully eluted and concentrated DNA fragments with molecular weights ranging from 2.7 to 13.9 MDa in 3 h.  相似文献   

9.
A comparison of four different methods for the extraction of spore DNA from Stachybotrys chartarum was conducted. Spore DNA was extracted and purified using either one of three different commercial kits or water. All preparations utilized bead milling. Genomic DNA extracted from 10(1) to 10(7) spores was assessed by both agarose gel electrophoresis and real-time quantitative polymerase chain reaction (qPCR) performed against multi-copy (rRNA) and single-(tubulin) gene targets. The spore isolation technique we employed was verified to be pure by light microscopy. Although all preparatory methods led to successful detection by qPCR, S. chartarum spore DNA prepared using the Qiagen Plant kit was notably better over the extraction range.  相似文献   

10.
Yuan S  Cohen DB  Ravel J  Abdo Z  Forney LJ 《PloS one》2012,7(3):e33865

Background

DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to isolate DNA that is representative of the microbial community sampled.

Methodology/Principal Findings

In this study, we statistically evaluated six commonly used DNA extraction procedures using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the observed species abundances were significantly different from the expected species abundances for all six DNA extraction methods used.

Conclusions/Significance

Protocols that included bead beating and/or mutanolysin produced significantly better bacterial community structure representation than methods without both of them. The reproducibility of all six methods was similar, and results from different experimenters and different times were in good agreement. Based on the evaluations done it appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead beating and/or mutanolysin to effectively lyse cells.  相似文献   

11.
Reliable field methods for the storage of tissues to be used for DNA extraction and amplification are critical to many studies employing molecular techniques. Protection from DNA degradation was compared among three commonly used methods of noncryogenic storage of tissues over a time scale of 2 years. All three methods prevented DNA degradation during storage for at least 6 months. DMSO (dimethyl sulfoxide)-salt solution provided the best protection from DNA degradation of tissues stored for up to 2 years. High molecular weight DNA was recovered from lysis buffer in which tissue was stored for 2 years, however, moderate amounts of degraded DNA was also present. High molecular weight DNA was recovered from tissues stored in ethanol for 2 years, however, the yield was relatively small compared to the other two noncryogenic storage techniques. Much of the DNA degradation in ethanol preserved tissues appeared to occur during the extraction procedure and can be reduced by soaking the tissue in lysis buffer for a few hours prior to beginning the extraction. The yield of PCR products was greatest from DNA extracted from DMSO-salt solution preserved tissues, whereas DNA from tissues stored in either lysis buffer or ethanol produced lower yields.  相似文献   

12.
Quick and high-efficiency electroelution of nucleic acid fragments.   总被引:1,自引:0,他引:1  
We describe a quick, simple, and inexpensive technique for the electroelution of nucleic acid fragments that provides a high yield of DNA by using common laboratory components. The quantity of buffer used for the recovery of nucleic acid fragments is relatively small, the quality of the DNA recovered is relatively high, and more than one electroelution can be carried out at the same time.  相似文献   

13.
A simple technique for electroelution of DNA from environmental samples.   总被引:1,自引:0,他引:1  
P A Rochelle  B H Olson 《BioTechniques》1991,11(6):724, 726-724, 728
A novel method was developed for the extraction of DNA from environmental material. Soil or sediment samples were encapsulated in agarose blocks and, following treatment with lysis reagents, the DNA was extracted by electroelution.  相似文献   

14.
该文研究了蜘蛛大分子量基因组DNA(HMW-gDNA)的提取以及一种高效电洗脱纯化装置的构建。以蜘蛛胸部肌肉组织为原料,通过自改良CTAB法提取蜘蛛HMW-gDNA,利用透析膜和2 mL离心管构建一种新的HMW-gDNA快速凝胶回收装置,并对蜘蛛HMW-gDNA进行电洗脱分离回收。结果显示,改良CTAB法可高效提取蜘蛛HMW-gDNA(>48.5 kb),且通过透析膜的截留作用,对普通琼脂糖凝胶中目的HMW-gDNA进行快速电洗脱分离,其回收率超过75%,OD260/OD280处于1.8~2.0之间,对HMW-gDNA完整性无影响。综合结果表明, 改良CTAB法可用于蜘蛛HMW-gDNA的提取,此电洗脱纯化装置可从普通琼脂糖中高效回收HMW-gDNA,是一种低成本、简捷、高效且实用性强的凝胶回收方法。  相似文献   

15.
Methods for DNA extraction from Candida albicans   总被引:9,自引:0,他引:9  
Three different methods are described for the extraction of total genomic DNA from the dimorphic fungus Candida albicans. One method, which enables a large number of cultures to be processed simultaneously, involves pulverizing dried cells with glass beads and then allowing the disrupted cells to break apart, autolyse, by incubation in a solution which includes sorbitol and a nonionic detergent. DNA extraction by a second method with a French pressure cell can be utilized on cultures in any phase of growth, but is not practical for processing numerous samples. The third method, which involves induction of spheroplasts, is commonly used for DNA extraction from various yeasts but is not suited for processing many samples simultaneously. The DNA extracted with the three procedures is comparable in quality; in particular, it is of high molecular size (greater than 30 kbp) and reacts readily with DNA-modifying enzymes such as restriction endonucleases.  相似文献   

16.
Plasmid DNA from Escherichia coli was isolated by electroelution carried out in an agarose gel that contains an incorporated dialysis membrane. As the relative mobility of circular plasmid DNA to linear chromosomal DNA increases when the agarose concentration is decreased, we were able to purify plasmids of up to 50 kbp in 0.3% agarose gel in Tris acetate buffer yielding 10-60 g DNA ml bacterial culture.  相似文献   

17.
While pulsed field gel electrophoresis has become an important tool for genotyping of bacteria, one of its drawbacks is that standard methods are rather time-consuming. In order to overcome this problem, shortened procedures for DNA preparation have been developed for some bacterial species. The aim of this study was to examine if a short procedure used for pulsed field gel electrophoresis of Clostridium botulinum could be applied to other Clostridia species. For this, the protocol was modified and used to prepare the DNA of 34 strains of 25 different Clostridia species. In contrast to a standard procedure, which takes at least 5 days from DNA extraction to completion of the electrophoresis, this protocol yielded results within 2 days. In order to directly compare the results of the short protocol with those of the standard, long procedure, parallel DNA preparations were performed using both methods and the two DNA samples thus obtained per strain were then run on the same gel. Briefly, the procedure was as follows. After embedding the bacterial cells in agarose, the agarose blocks were incubated for 1 h in lysis solution containing lysozyme, mutanolysin, lysostaphin and RNase. This was followed by a 1-h proteinase K treatment. Then, slices were cut from the agarose blocks and washed for 15 min in TE buffer, these washes were repeated four times with fresh TE. After a 2-h restriction with SmaI, electrophoresis was carried out overnight.  相似文献   

18.
We present a method for the rapid and simple extraction of DNA from marine sediments using electroelution. It effectively separates DNA from compounds, including humic substances, that interfere with subsequent DNA quantification and amplification. After extraction of the DNA from the sediment into an aqueous solution, the crude sample is encased in 2% agarose gel and exposed to an electrical current, which draws the DNA out of the gel into a centrifugal filter vial. After electroelution, the sample is centrifuged to remove contaminants ≤100 000 Da. Recovery of DNA using this method is quantitative and does not discriminate on the basis of size, as determined using DNA standards and DNA extracts from environmental samples. Amplification of DNA is considerably improved due to removal of PCR inhibitors. For Archaea, only these purified extracts yielded PCR products. This method allows for the use of relatively large volumes of sediment and is particularly useful for sediments containing low biomass such as deeply buried marine sediments. It works with both organic-rich and -poor sediment, as well as with sediment where calcium carbonate is abundant and sediment where it is limited; consequently, adjustment of protocols is unnecessary for samples with very different organic and mineral contents.  相似文献   

19.
Quantitative PCR (qPCR) enables rapid and sensitive gene quantification and is widely used in genomics, such as biological, medical, environmental, and food sciences. However, sample pretreatment requires the use of conventional DNA extraction kits which are time-consuming and labor intensive. In this study, we investigated four physical lysis only (PLO) methods which are rapid and could serve as alternatives to conventional DNA extraction kits. These PLO methods are bead mill, heating, sonication, and freeze–thaw. Using ethidium bromide-based assay, their performance was evaluated and compared. The effects of cell debris and its removal were also investigated. Bead mill method without cell debris removal appeared to yield the best qPCR results among the four PLO methods. In addition, bead mill method also performed better than conventional DNA extraction kits. It is probably due to the substantial loss of DNA material during the extensive purification of the conventional DNA extraction kits. The bead mill method has been demonstrated to successfully quantify 102 to 107 copies of the PAH-RHDα gene of Pseudomonas putida.  相似文献   

20.
Real-time quantitative PCR (RTQ-PCR) was used to quantify the bacterial target DNA extracted by three commonly used DNA extraction protocols (bead mill homogenization, grinding in presence of liquid nitrogen and hot detergent SDS based enzymatic lysis). For the purpose of our study, pure culture of Bacillus cereus (model organism), sterilized soil seeded with a known amount of B. cereus (model soil system) and samples from woodland and grassland (environmental samples) were chosen to extract DNA by three different protocols. The extracted DNA was then quantified by RTQ-PCR using 16S rDNA specific universal bacterial primers. The standard curve used for the quantification by RTQ-PCR was linear and revealed a strong linear relationship (r(2)=0.9968) with a higher amplification efficiency, e5=1.02. High resolution gel electrophoresis was also carried out to observe the effect of these extraction methods on diversity analysis. For the model soil system, the liquid nitrogen method showed the highest target DNA copy number (1.3 x 10(9) copies/microl). However, for both the environmental samples, the bead beating method was found to be suitable on the basis of the high target DNA copy numbers (5.38 x 10(9) and 4.01 x 10(8) copies/ml for woodland and grassland respectively), high yield (6.4 microg/g and 1.76 microg/g of soil for woodland and grassland respectively) and different band patterns on high resolution gel electrophoresis suggesting an overall high extraction efficiency. This difference in the extraction efficiency between the model soil system and environmental samples may be attributed to different affinity of seeded and native DNA to soil particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号