首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary We describe a rapid and easily reproducible modification of the freeze-squeeze method of separating DNA from agarose gels. Our method involves slicing out the agarose gel portion which contains the DNA of interest, freezing this gel slice at –20°C, then centrifuging the frozen slice in a filtration unit which contains a cellulose acetate filter. The agarose is retained on the filter and the filtrate contains the DNA. DNA purified in this manner could be completely digested with restriction endonucleases and completely ligated with DNA ligase, without further purification. The percentages of recovery for various sizes of linear and plasmid double-stranded DNA ranged from 57 to 69%. The procedure takes less than 30 minutes to perform.  相似文献   

2.
A new type of agarose material, superporous agarose, was used as a support material in an analytical system designed for monitoring of bioprocesses with respect to metabolites and intracellular enzymes. The superporous agarose was used in the form of miniaturised gel plug columns (15×5.0 mM I.D. monolithic gel bed). The gel plugs were designed to have one set of very large pores (about 50 m in diameter) through which cells, cell debris and other particulate contaminants from the bioreactor could easily pass. The material also had normal diffusion pores (300 Å) characteristic of all agarose materials, providing ample surface for covalent attachment of antibodies and enzymes used in the analytical sequence. The superporous agarose gel plug columns were characterised with respect to flow properties and handling of heavy cell loads as well as dispersion of injected samples (a Bodenstein number of about 40 was observed with acetone tracer at a flow rate of 1 ml min–1). To evaluate the practical performance of the superporous gel plug columns, two applications were studied: (1) on-line determination of glucose in cultivation broth (gel plug with immobilized glucose oxidase) and (2) immunochemical quantification of intracellular -galactosidase in E. coli (gel plug with lysozyme to achieve cell lysis and gel plug with antibodies against -galactosidase).  相似文献   

3.
In a previous study, we mapped replication origin regions of the plastid DNA around the 3 end of the 23S rRNA gene in rice suspension-cultured cells. Here, we examined initiation of the plastid DNA replication in different rice cells by two-dimensional agarose gel electrophoresis. We show for the first time, to our knowledge, that the replication origin region of the plastid DNA differs among cultured cells, coleoptiles and mature leaves. In addition, digestion of the replication intermediates from the rice cultured cells with mung bean nuclease, a single-strand-specific nuclease, revealed that both two single strands of the double-stranded parental DNA were simultaneously replicated in the origin region. This was further confirmed by two-dimensional agarose gel analysis with single-stranded RNA probes. Thus, the mode of plastid DNA replication presented here differs from the unidirectional replication started by forming displacement loops (D-loops), in which the two D-loops on the opposite strands expand toward each other and only one parental strand serves as a template.  相似文献   

4.
Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel''s molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight3. The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along4. The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation5; 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: 1. Understand the mechanism by which DNA fragments are separated within a gel matrix 2. Understand how conformation of the DNA molecule will determine its mobility through a gel matrix 3. Identify an agarose solution of appropriate concentration for their needs 4. Prepare an agarose gel for electrophoresis of DNA samples 5. Set up the gel electrophoresis apparatus and power supply 6. Select an appropriate voltage for the separation of DNA fragments 7. Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands 8. Determine the sizes of separated DNA fragments    相似文献   

5.
Macronuclear DNAs from three related hypotrichous ciliated protozoans were compared by agarose gel electrophoresis. Each was shown to be composed of DNA duplexes that yielded a unique pattern of bands overlying a continuous distribution of DNA sizes ranging from 400 bp to 20,000 bp. By EM, the number average molecular sizes for doublestranded DNA were 2,200 bp for Oxytricha sp., 2,514 bp for Stylonychia pustulata and 1,836 bp for Euplotes aediculatus. Contrary to previous reports we present evidence that the macronuclear DNAs in each of these three organisms lack single-stranded interruptions.  相似文献   

6.
A. J. Bendich 《Protoplasma》1991,160(2-3):121-130
Summary Cells and organelles suspended in gelled agarose agarose were lysed with detergent and protease, stained with ethidium bromide and their DNA was observed by fluorescence microscopy. The migration of individual DNA molecules during electrophoresis on a microscope slide was recorded on video tape so that moving pictures could be analyzed. The DNA from lysed bacteria (Escherichia coli andAgrobacterium tumefaciens) appeared as a rosette of at least twenty loops of varying size, whereas that from bacterial spheroplasts (E. coli andPseudomonas aeruginosa) appeared as circular forms or rods with many fine filaments of RNA extending toward the anode. The DNA from chloroplasts of watermelon (Citrullus vulgaris) and pea (Pisum sativum) did not appear as a rosette of loops. Many or most of the chloroplast DNA molecules per lysed chloroplast were immobile in the electric field, as if in circular form hooked on agarose fibers. The amount of DNA-fluorescence per watermelon mitochondrial particle was much less than that found for either chloroplasts or bacteria. The appearance of the mitochondrial DNA during electrophoresis was that of linear molecules, no obviously circular forms were evident and no rosette structures were observed.Abbreviations cpDNA chloroplast DNA - DAPI 4,6-diamidino-2-phenylindole - kb kilobase pairs - mtDNA mitochondrial DNA - PFGE pulsed-field gel electrophoresis  相似文献   

7.
Summary We have studied the effects of agar and agarose on Vent DNA polymerase and Taq DNA polymerase. Agar strongly inhibited Vent DNA polymerase but only moderately inhibited Taq DNA polymerase. Such a difference may be due to the fact that the two polymerases belong to different structural families. When Vent DNA polymerase is used to amplify DNA from lambda plaques, agarose rather than agar is the solid medium of choice.  相似文献   

8.
A DNA extraction suitable for mycobacterial lysis in gentle conditions compatible with genome analysis by pulsed-field gel electrophoresis is presented. Effects of preliminary treatments with SDS, Triton X-100, and hexane on mycobacterial outer layer were observed by electron microscopy. The most efficient procedure, performed on cells from liquid or solid medium, consisted of treatment by Triton X-100, agarose embedding of the cells, and further treatment with -amylase followed by lysozyme and SDS-proteinase K.  相似文献   

9.
As a collaborative work of three laboratories the polymorphism of the canine fourth complement component (C4) was studied in a total of 131 unrelated dogs from different breeds and mongrels. Using high voltage electrophoresis followed by an immunoblotting technique, we detected eight distinct variants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of canine C4 showed an additional heterogeneity of the and chains which resulted in a total of 11 variants in the population studied. So that more precise information concerning the respective C4 allotypes will be available, a nomenclature is proposed designating not only the migration pattern of the C4 variants in agarose gels but also the heterogeneity of the C4 chains observed in SDS-PAGE.Abbreviations used in this paper AGE agarose gel electrophoresis - C4 fourth complement component - DLA dog leukocyte antigen - EDTA ethylene diaminetetraacetate - FCS fetal calf serum - PBS phosphate-buffered saline - PBST PBS and 0.22% Tween-20 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

10.
We used agarose gel electrophoresis to measure the effective charge neutralization of DNA by counterions of different structure and valence, including Na+, Mg2+, Co(NH3), and sperinidine3+, which competed for binding with an excess of Tris acetate buffer. Linear DNA molecules ranged in size from 1 to 5 kilobases, and supercoiled plasmid pUC18 was also measured. In all cases, the results were in good agreement with theoretical predict ions from counterion condensation theory for two-counterion mixtures. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
    
Summary In addition to high molecular weight plastomic DNA, chloroplasts of Acetabularia cliftonii also contain small supercoiled DNA molecules (Green 1976). Restriction enzyme analysis of this 4.28±0.15 m DNA resulted in a 14.1 kbp circular restriction map. Southern blot analysis revealed that the high molecular weight plastomic DNA of A. cliftonii contains all of the 4.3 m DNA restriction fragments suggesting that the whole sequence of the 4.3 m DNA is an integral component of the plastome.Heterologous DNA hybridizations showed that 4.3 m DNA has no homology with either chloroplast ribosomal DNA from mustard or total chloroplast DNA from spinach. On the other hand, homology was found between 4.3 m DNA and specific restriction fragments of A. mediterranea plastomic DNA and E. coli chromosomal DNA.Abbreviations SSC 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0 - LMP agarose low melting point agarose - ctDNA chloroplast DNA - DTT dithiothreitol  相似文献   

12.
Biochemical analysis and electron microscopy showed that mitochondria of both the fertile and the male sterile 350 and 447 cytoplasms ofVicia faba. L. contain two small supercoiled DNA molecules of mean length of 1 700 and 1 420 base pairs in addition to the main mitochondrial DNA of high molecular weight. By agarose gel electrophoresis, the male sterile cytoplasm 350 is distinguished from the fertile cytoplasm and from the male sterile cytoplasm 447 by the presence of an additional supercoiled DNA molecule of approximately 1 540 bp.  相似文献   

13.

Background

Duplex real-time PCR assays have been widely used to determine amounts and concentrations of free circulating DNA in human blood plasma samples. Circulatory plasma DNA is highly fragmented and hence a PCR-based determination of DNA concentration may be affected by the limited availability of full-length targets in the DNA sample. This leads to inaccuracies when counting PCR target copy numbers as whole genome equivalents.

Methodology/Principal Findings

A model system was designed allowing for assessment of bias in a duplex real-time PCR research assay. We collected blood plasma samples from male donors in pools of 6 to 8 individuals. Circulatory plasma DNA was extracted and separated by agarose gel electrophoresis. Separated DNA was recovered from the gel in discrete size fractions and analyzed with different duplex real-time PCR Taqman assays detecting a Y chromosome-specific target and an autosomal target. The real-time PCR research assays used differed significantly in their ability to determine the correct copy number ratio of 0.5 between Y chromosome and autosome targets in DNA of male origin. Longer PCR targets did not amplify quantitatively in circulatory DNA, due to limited presence of full-length target sequence in the sample.

Conclusions

PCR targets of the same small size are preferred over longer targets when comparing fractional circulatory DNA concentrations by real-time PCR. As an example, a DYS14/18S duplex real-time PCR research assay is presented that correctly measures the fractional concentration of male DNA in a male/female mixture of circulatory, fragmented DNA.  相似文献   

14.
Summary The effective diffusion coefficient of oxygen, IDe, was determined in different gel support materials (calcium alginate, -carrageenan, gellan gum, agar and agarose) which are generally used for immobilization of cells. The method used was based upon fitting Crank's model on the experimental data. The model describes the solute diffusion from a well-stirred solution into gel beads which are initially free of solute. The effect of the gel concentration on IDe of oxygen in the gel was investigated. The results showed a decreasing IDe for both agar and agarose at increasing gel concentration. In case of calcium alginate and gellan gum, a maximum in IDe at the intermediate gel concentration was observed. It is hypothesized that this phenomenon is due to a changing gelpore structure at increasing gel concentrations. The IDe of oxygen in calcium alginate, -carrageenan and gellan gum varied from 1.5*10–9 to 2.1*10–9 m2s–1 in the gel concentration range of 0.5 to 5% (w/v).  相似文献   

15.
Summary A 4.32 kb DNA fragment, on which the DNA replication terminus (terR) site of plasmid R 6K was located, was inserted into the unique EcoRI site of plasmid pUC9. To detect replication intermediate molecules with a replication fork halted at the terR site, a cell DNA extract was digested with EcoRI, electrophoresed through an agarose gel and stained with ethidium bromide. In addition to two major bands, one derived from vector DNA and the other from the ter insert fragment, two extra minor bands were detected. Following DNA-DNA hybridization and electron microscopic observation we concluded that the two minor bands corresponded to the two Y-shaped molecules, produced from the -shaped intermediate molecules by EcoRI digestion.Abbreviations Ap ampicillin - kb kilobase pair(s) - EtBr ethidium bromide  相似文献   

16.
P Serwer  S J Hayes  E T Moreno  C Y Park 《Biochemistry》1992,31(36):8397-8405
Although the icosahedral bacteriophage T7 capsid has a diameter (58 nm) that is 234-fold smaller than the length of the linear, double-stranded T7 DNA, binding of a T7 capsid to T7 DNA is found here to have dramatic effects on the migration of the DNA during both pulsed field agarose gel electrophoresis (PFGE; the field inversion mode is used) and constant field agarose gel electrophoresis (CFGE). For these studies, capsid-DNA complexes were obtained by expelling DNA from mature bacteriophage T7; this procedure yields DNA with capsids bound at a variable position on the DNA. When subjected to CFGE at 2-6 V/cm in 0.20-2.5% agarose gels, capsid-DNA complexes arrest at the electrophoretic origin. Progressively lowering the electrical potential gradient to 0.5 V/cm results in migration; most complexes form a single band. The elevated electrical potential gradient (3 V/cm) induced arrest of capsid-DNA complexes is reversed when PFGE is used instead of CFGE. For some conditions of PFGE, the mobility of capsid-DNA complexes is a function of the position of the capsid on the DNA. During either CFGE (0.5 V/cm) or PFGE, capsid-DNA complexes increasingly separate from capsid-free DNA as the percentage of agarose increases. During these studies, capsid-DNA complexes are identified by electron microscopy of enzymatically-digested pieces of agarose gel; this is apparently the first successful electron microscopy of DNA from an agarose gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A rapid direct-extraction method was used to obtain DNA from environmental soil samples. Heat, enzymes, and guanidine isothiocyanate were utilized to lyse cells. The DNA was purified by agarose gel electrophoresis, amplified with 16S rRNA-based primers by use of the polymerase chain reaction, and then digested with the restriction endonucleasePalI. The extraction method was used to obtain DNA from a variety of plants, bacteria, and fungi includingGossypium hirsucum (cotton),Pseudomonas, Bacillus, Streptomyces, andColletotrichum. Up to 100 g DNA/g (wet weight) of soil and 400 g DNA/g of plant material were recovered. Restriction endonuclease analysis patterns of amplified rDNA from pure microbial cultures and plant species contained three to five different DNA fragments. Amplified rDNA of mixed population DNA extracts from soil samples, digested with the restriction endonucleasePalI, contained 12–20 DNA fragments, appearing as sample fingerprints. Results from eight environmental soil samples that were analyzed suggest that the amplified rDNA fingerprints can be used to help characterize the genetic and biological diversity of the microbial populations in these samples.  相似文献   

18.
Summary A method was developed for the introduction of plasmids into Clostridium botulinum by electroporation. A 4.4 kb plasmid vector, pGK12, which contains genes for resistance to erythromycin (Emr) and chloramphenicol (Cmr) was electroporated into C. botulinum type A (Hall A). The highest transformation efficiency was obtained using midlog phase cells, 10% PEG 8000 as the electroporation solution, and 2.5 kV field strength. The transformation efficiency was highest (103 transformants/g of DNA) when 1 g of plasmid DNA and 4 × 108 CFU/ml of recipient cells were used. Plasmid DNA recovered from the transformants was indistinguishable from that introduced on the basis of restriction enzyme digestion and agarose gel electrophoresis.  相似文献   

19.
Kim  Jung Hyun  Yun  Eun Ju  Seo  Nari  Yu  Sora  Kim  Dong Hyun  Cho  Kyung Mun  An  Hyun Joo  Kim  Jae-Han  Choi  In-Geol  Kim  Kyoung Heon 《Applied microbiology and biotechnology》2017,101(3):1111-1120

The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of d-galactose and 3,6-anhydro-l-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the solgel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the solgel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the solgel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40T, was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50 °C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45 °C, which was above the solgel transition temperature of 1 % (w/v) agarose (∼35 °C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the solgel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.

  相似文献   

20.
Oligonucleotide chip-based assays can be a sample-thrifty, time-saving, routine tool for evaluation of chemical-induced DNA strand breaks. This article describes a novel approach using an oligonucleotide chip to determine photosensitizer-induced DNA single-strand breaks. Surface coverage of fluorophore-labeled oligonucleotides on silicon dioxide chip surfaces was determined on alkaline phosphatase digestion. Fluorescence maxima (at 520 nm) of the solutions were converted to molar concentrations of the fluorescein-modified oligonucleotide by interpolation from a predetermined standard linear calibration curve. The photosensitizing activity of chlorpromazine and triflupromazine toward DNA single-strand breaks was then studied at different drug doses and also as a function of photoirradiation time. Photoinduced single-strand breaks calculated using the method described here agreed with values predicted by theoretical extrapolation of the single-strand breaks obtained for plasmid DNAs from agarose gel electrophoresis, and thereby indirectly validated the chip-based assays. Under UV irradiation (93.6 kJ/m2) chlorpromazine (0.08 mM) was found to have significant photogenotoxicity. However, triflupromazine did not exhibit any (photo)genotoxicity over the concentration range studied (0.04–0.20 mM). The method developed will be useful for quantitative screening of drug genotoxicity in terms of induction of breaks in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号