首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the performance of an upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater under temperate climates conditions, the addition of a sludge digester to the process was investigated. With the decrease in temperature, the COD removal decreased from 78% at 28 °C to 42% at 10 °C for the UASB reactor operating alone at a hydraulic retention time of 6 h. The decrease was attributed to low hydrolytic activity at lower temperatures that reduced suspended matter degradation and resulted in solids accumulation in the top of the sludge blanket. Solids removed from the upper part of the UASB sludge were treated in an anaerobic digester. Based on sludge degradation kinetics at 30 °C, a digester of 0.66 l per liter of UASB reactor was design operating at a 3.20 days retention time. Methane produced by the sludge digester is sufficient to maintain the temperature at 30 °C.  相似文献   

2.
The effect of combination of mechanical and chemical pretreatment of municipal waste activated sludge (WAS) prior to anaerobic digestion was studied using a laboratory scale system with an objective to decrease volatile sulfur compounds in biogas and digested sludge. Mechanical pretreatment was conducted using depressurization of WAS through a valve from a batch pretreatment reactor pressurized at 75 ± 1 psi, while combined pretreatments were conducted using six different dosages of hydrogen peroxide (H2O2) and ferrous chloride (FeCl2) along with mechanical pretreatment. About 37-46% removal of H2S in biogas occurred for different combined pretreatment conditions. Sludge solubilization achieved due to the mechanical pretreatment increased total cumulative methane production by 8-10% after 30 days during the biochemical methane potential (BMP) test. The pretreatment also improved dewaterability in terms of time to filter (TTF), and decreased methyl mercaptan generation potential of the digested sludge.  相似文献   

3.
Li Y  Yan XL  Fan JP  Zhu JH  Zhou WB 《Bioresource technology》2011,102(11):6458-6463
The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH4 g−1 volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g−1 mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH4 g−1 volatile solid added d−1 at 3.50 g volatile solids g−1 mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH4 g−1 volatile solids added d−1 for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure.  相似文献   

4.
The effects of chitosan addition on treatment of palm oil mill effluent were investigated using two lab-scale upflow anaerobic sludge bed (UASB) reactors: (1) with chitosan addition at the dosage of 2 mg chitosan per g volatile suspended solids on the first day of the operation (R1), (2) without chitosan addition (the control, R2). The reactors were inoculated with mesophilic anaerobic sludge which was acclimatized to a thermophilic condition with a stepwise temperature increase of 5 °C from 37 to 57 °C. The OLR ranged from 2.23 to 9.47 kg COD m−3 day−1. The difference in biogas production rate increased from non-significant to 18% different. The effluent volatile suspended solids of R1 was 65 mg l−1 lower than that of R2 on Day 123. 16S rRNA targeted denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial community indicated that some methanogens in the genus Methanosaeta can be detected in R1 but not in R2.  相似文献   

5.
Chang CJ  Tyagi VK  Lo SL 《Bioresource technology》2011,102(17):7633-7640
Individual and combined effects of microwave (MW) and alkali pretreatments on sludge disintegration and subsequent aerobic digestion of waste activated sludge (WAS) were studied. Pretreatments with MW (600 W-85 °C-2 min), conventional heating (520 W-80 °C-12 min) and alkali (1.5 g NaOH/L - pH 12-30 min) achieved 8.5%, 7% and 18% COD solubilization, respectively. However, combined MW-alkali pretreatment synergistically enhanced sludge solubilization and achieved 46% COD solubilization, 20% greater than the additive value of MW alone and alkali alone (8.5 + 18% = 26.5%). Moreover, the results of the batch aerobic digestion study on MW-alkali pretreated sludge showed 93% and 63% reductions in SCOD and VSS concentrations, respectively, at 16 days of SRT. The VSS reduction was 20% higher than that of WAS without pretreatment.  相似文献   

6.
This work studied the hydrolysis kinetics and the solubilization of waste activated sludge under a medium range temperature (50-90 degrees C) and pH in the alkaline region (8-11), as a pretreatment stage for anaerobic digestion. The hydrolysis rate for the solubilization of volatile suspended solids (VSS) followed a first-order rate. A linear polynomial hydrolysis model was derived from the experimental results leading to a satisfactory correlation between the hydrolysis rate coefficient, pH, and temperature. At pH 11 and a temperature of 90 degrees C the concentration of the VSS was 6.82%, the VSS reduction reached 45% within ten hours and at the same time the soluble COD was 70.000 mg/l and the total efficiency for methane production 0.28 l of CH4 per g of VSS loading.  相似文献   

7.
The increase in the number of wastewater treatment plants and the quality required for the residue produced makes it necessary to improve the efficiency of anaerobic digestion of sludge. Pretreatments of secondary sludge have shown important advantages in the elimination of volatile solids and pathogenic microorganisms from the sludge, and they have also had a positive effect on biogas production. However, such methods are associated with high operating costs. This paper shows the behavior of a autohydrolysis pretreatment, which consists of subjecting the secondary sludge to a temperature of 55 °C for 12–24 h with a limited amount of oxygen under batch operation. The pretreatment results in a high solubilization of organic matter, increasing the fluidity of the sludge and improving the biogas production. This study focuses on the evaluation of the influence of oxygen and the initial sludge concentration on the pretreatment behavior. The main results obtained showed that when autohydrolysis pretreatment was carried out for 12 h, with a high solid concentration and microaerobic conditions, the solubilization of organic matter was increased by 40%, the methane productivity was improved by 23%, and there was an overall improvement in sludge fluidity. Moreover, the energy assessment of the autohydrolysis pretreatment and anaerobic digestion system showed the energetic feasibility of this treatment method, since the increase in energy production compensates for the extra energy required to carry out the pretreatment.  相似文献   

8.
Ye J  Mu Y  Cheng X  Sun D 《Bioresource technology》2011,102(9):5498-5503
Treatment of a fresh leachate with high-strength organics and calcium from municipal solid waste (MSW) incineration plant by an up-flow anaerobic sludge blanket (UASB) reactor was investigated under mesophilic conditions, emphasizing the influence of organic loading rate (OLR). When the reactor was fed with the raw leachate (COD as high as 70,390-75,480 mg/L) at an OLR of 12.5 kg COD/(m3 d), up to ∼82.4% of COD was removed suggesting the feasibility of UASB process for treating fresh leachates from incineration plants. The ratio of volatile solids/total solids (VS/TS) of the anaerobic sludge in the UASB decreased significantly after a long-term operation due to the precipitation of calcium carbonate in the granules. Scanning electron microscopy (SEM) observation shows that Methanosaeta-like species were in abundance, accompanied by a variety of other species. The result was further confirmed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing.  相似文献   

9.
Anaerobic acidogenesis of primary sludge: the role of solids retention time   总被引:2,自引:0,他引:2  
This research investigates the effect of solids retention time (SRT) on the acid-phase anaerobic digestion of primary sludge. A series of experiments were conducted using two continuous-flow 3-L units with the following configuration: a completely mixed reactor (CMR) with clarifier and solids recycle and an upflow anaerobic sludge blanket (UASB) reactor. Results show that C(2) to C(5) volatile fatty acids (VFA) were the predominant compounds formed. At a constant hydraulic retention time (HRT) of 12 h, variation in SRT from 10 to 20 days resulted in a slight increase in VFA production in both systems, but at a shorter SRT (5 days) a drastic drop in acid production was observed. In addition, the percent distribution of VFA was to some extent affected by the change in SRT. On the other hand, organic matter degradation [measured by the chemical oxygen demand (COD) specific solubilization rate or the percent volatile suspended solids (VSS) reduction] appeared to be independent of SRT, at least in the range investigated. The percent soluble COD in the form of VFA, however, increased steadily with increasing SRT, approaching the 90% level at 20 days. The remaining soluble COD in the effluent from these systems may be mainly attributed to metabolic intermediates and unused soluble substrate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Three pretreatment methods were compared based on their ability to increase the extent and rate of anaerobic bioconversion of pulp mill secondary sludge to biogas. The pretreatment technologies used in these experiments were: (i) thermal pretreatment performed at 170 °C; (ii) thermochemical (caustic) pretreatment performed at pH 12 and 140 °C; and (iii) sonication performed at 20 kHz and 1 W mL−1. Sludge samples were obtained from a sulfite and a kraft pulp mill, and biochemical methane potential (BMP) assays were performed using microbial granules obtained from a high-rate anaerobic digester operating at a pulp mill. Biogas production from untreated sludge was 0.05 mL mg−1 of measured chemical oxygen demand (COD) and 0.20 mL mg−1 COD for kraft and sulfite sludge, respectively. Thermal pretreatment had the highest impact on sludge biodegradability. In this case, biogas yield and production rate from sulfite sludge increased by 50% and 10 times, respectively, while biogas yield and production rate from kraft sludge increased by 280% and 300 times, respectively. Biogas yield correlated to soluble carbohydrate content better than soluble COD.  相似文献   

11.
Small-scale sour starch agroindustry in Colombia suffer from absence of water treatment. Although starch processing plants produce diluted wastewater, it is a source of pollution and cause environmental problems to the nearby rural population. A laboratory scale anaerobic horizontal flow filter packed with bamboo pieces was evaluated for the treatment of cassava starch extraction wastewater. The wastewater used in the experimentation was the draining water of the starch sedimentation basin. The reactor was operated for 6 months. It was inoculated with a semi-granular sludge from an anaerobic UASB reactor of a slaughterhouse. Maximum organic loading rate (OLR) applied was 11.8g COD/L d without dilution of the wastewater. At steady state and maximum OLR applied, 87% of the COD was removed and a gas productivity of 3.7L/L d was achieved. The average biogas yield was 0.36L/g COD removed. Methane content in the biogas was in the range of 69-81%. The total suspended solids (TSS) removed were 67%. The relative high lactic acid content did not negatively influence the performance of the reactor. No perturbation due to cyanide (3-5mg/L) was observed during the reactor operation. The results obtained indicated that the anaerobic horizontal flow filter could be used efficiently for the treatment of wastewater from Colombian starch processing small-scale agroindustry.  相似文献   

12.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

13.
Li J  Wang J  Luan Z  Deng Y  Chen L 《Bioresource technology》2011,102(10):5709-5716
A two-stage UASB reactor was employed to pretreat acrylic fiber manufacturing wastewater. Mesophilic operation (35 ± 0.5 °C) was performed with hydraulic retention time (HRT) varied between 28 and 40 h. Mixed liquor suspended solids (MLSS) in the reactor was maintained about 8000 mg/L. The results showed COD and sulfate removal could be kept at 51% and 75%, respectively, when the HRT was no less than 38 h. Sulfate reduction mainly occurred in the acidification-stage reactor while methane production mainly occurred in the methane-stage reactor. The size of granule formed in the acidification-stage reactor ranged between 1 and 5 mm while the largest size of granule in the methane-stage reactor ranged from 0.5 to 2 mm. Compared to microbial populations in the acidification-stage reactor, the microbial diversity in methane-stage reactor was more abundant. In the acidification-stage reactor, the Syntrophobacter sulfatireducens devoted to both sulfate reduction and acetate production.  相似文献   

14.
The anaerobic treatment of the wastewater from the meat processing industry was studied using a 7.2 1 UASB reactor. The reactor was equipped with an unconventional configuration of the three-phase separation system. The effluent was characterized in terms of pH (6.3-6.6), chemical oxygen demand (COD) (2,000-6,000 mg l(-1)), biochemical oxygen demand BOD5 (1,300-2,300 mg 1(-1)), fats (40-600 mg l(-1)) and total suspended solids (TSS) (850-6,300 mg l(-1)) The reactor operated continuously throughout 80 days with hydraulic retention time of 14, 18 and 22 h. The wastewater from Rezende Industrial was collected after it had gone through pretreatment (screening, flotation and equalization). COD, BOD and TSS reductions and the biogas production rate were the parameters considered in analyzing the efficiency of the process. The average production of biogas was 111 day(-1) (STP) for the three experimental runs. COD removal varied from 77% to 91% while BOD removal was 95%. The removal of total suspended solids varied from 81% to 86%. This fact supports optimal efficiency of the proposed three-phase separation system as well as the possibility of applying it to the treatment of industrial effluents.  相似文献   

15.
Laboratory and pilot-scale experiments were carried out in order to evaluate the influence of thermal pre-treatment time on waste-activated sludge properties and anaerobic biodegradability. Six experimental conditions were analyzed from 0 to 30 min of hydrolysis time. Solubilization of macromolecular compounds, changes in the main sludge properties and anaerobic biodegradability of the sewage sludge were evaluated. A similar carbohydrate solubilization degree was achieved, from 53% to 70% and 59% to 75% for lab- and pilot-scale experiments, respectively. In the case of proteins, the values of solubilization were lower in the pilot-scale experiment than in the laboratory, with 31-45% and 47-70%, respectively. Ammonia and volatile fatty acid did not undergo important changes; however the sludge dewaterability enhanced at increased pre-treatment times. All the pre-treatment conditions had a positive effect with regard to anaerobic biodegradability and by fitting experimental data with a simplified mathematical model, it was concluded that the maximum biogas production rate is more influenced by the pre-treatment time than the total biogas production.  相似文献   

16.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

17.
Development of an improved reactor configuration of anaerobic filter was carried out for the elimination of clogging of filter media. The experiments over different hydraulic retention times (HRTs) indicated that the HRT of 12 h was the most appropriate one for the system studied while treating the municipal wastewater, which resulted 90% and 95% BOD and COD reduction, respectively. Reduction up to 95% in suspended solids concentration could be achieved without any pretreatment. The specific biogas yield obtained was 0.35 m(3) CH(4)/kgCODr with 70% of CH(4) content in the biogas generated from the system at the HRT of 12 h. Operational problems such as clogging of filter media were not observed throughout the period of study over 600 d.  相似文献   

18.
Anaerobic digestion of tomato, cucumber, common reed and grass silage was studied in four separate two-stage reactor configuration consisting of leach bed reactor (LBR) and upflow anaerobic sludge blanket reactor (UASB). LBR studies showed that COD solubilization for cucumber and grass silage was higher (50%) than tomato (35%) and common reed (15%). Results also showed that 31-39% of initial TKN present in tomato and cucumber was solubilized in the leachates and 47-54% of the solubilized TKN was converted to NH4-N. The corresponding values for common reed and grass silage were 38-50% and 18-36%, respectively. Biomethanation of the leachates in UASB reactors resulted in methane yields of 0.03-0.14 m3 CH4 kg−1VSfed for the studied crop materials. Thus, high COD solubilization, high nitrogen mineralization and solubilization rates were feasible during anaerobic digestion of lignocellulosic materials in a two-stage LBR-UASB reactor system.  相似文献   

19.
The objective of this work was to maximize the digestibility of biological sludge to elucidate the feasibility of a new sludge management strategy to recover good quality sludge for agricultural use. The combined effects of organic loading rates (from 0.7 to 2.8 g VS L−1 d−1) and the degree of disintegration by anaerobic digestion of sonicated activated sludge were discussed, and the thermal and energetic balances were evaluated. Despite low sonication inputs, sludge digestion performance improved in terms of solids degradation and biogas production depending on the soluble organic load. The biogas production by sonicated sludge was higher (up to 30%) with respect to the control. Filterability improved during digestion of sonicated sludge at medium OLR due to a significant abatement of the fines. Thermal balances indicated that sonication may be a proper system to guarantee self-sustaining WAS mesophilic digestion. Nevertheless, thickening is a pre-requisite to achieve a positive energy balance.  相似文献   

20.
Electrolysis-enhanced anaerobic digestion of wastewater   总被引:1,自引:0,他引:1  
This study demonstrates enhanced methane production from wastewater in laboratory-scale anaerobic reactors equipped with electrodes for water electrolysis. The electrodes were installed in the reactor sludge bed and a voltage of 2.8-3.5 V was applied resulting in a continuous supply of oxygen and hydrogen. The oxygen created micro-aerobic conditions, which facilitated hydrolysis of synthetic wastewater and reduced the release of hydrogen sulfide to the biogas. A portion of the hydrogen produced electrolytically escaped to the biogas improving its combustion properties, while another part was converted to methane by hydrogenotrophic methanogens, increasing the net methane production. The presence of oxygen in the biogas was minimized by limiting the applied voltage. At a volumetric energy consumption of 0.2-0.3 Wh/LR, successful treatment of both low and high strength synthetic wastewaters was demonstrated. Methane production was increased by 10-25% and reactor stability was improved in comparison to a conventional anaerobic reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号