首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Waste activated sludge (WAS) is difficult to degrade in anaerobic digestion systems and pretreatments have been shown to speed up the hydrolysis stage. Here the effects of acid pretreatment (pH 6-1) using HCl on subsequent digestion and dewatering of WAS have been investigated. Optimisation of acid dosing was performed considering digestibility benefits and level of acid required. Pretreatment to pH 2 was concluded to be the most effective. In batch digestion this yielded the same biogas after 13 days as compared to untreated WAS at 21 days digestion. In semi-continuous digestion experiments (12 day hydraulic retention time at 35 °C) it resulted in a 14.3% increase in methane yield compared to untreated WAS, also Salmonella was eradicated in the digestate. Dewatering investigations suggested that the acid pretreated WAS required 40% less cationic polymer addition to achieve the same cake solid content. A cost analysis was also carried out.  相似文献   

2.
This study focuses on the exploitation of cheese whey as a source for hydrogen and methane, in a two-stage continuous process. Mesophilic fermentative hydrogen production from undiluted cheese whey was investigated at a hydraulic retention time (HRT) of 24 h. Alkalinity addition (NaHCO3) or an automatic pH controller were used, to maintain the pH culture at a constant value of 5.2. The hydrogen production rate was 2.9 ± 0.2 L/Lreactor/d, while the yield of hydrogen produced was approximately 0.78 ± 0.05 mol H2/mol glucose consumed, with alkalinity addition, while the respective values when using pH control were 1.9 ± 0.1 L/Lreactor/d and 0.61 ± 0.04 mol H2/mol glucose consumed. The corresponding yields of hydrogen produced were 2.9 L of H2/L cheese whey and 1.9 L of H2/L cheese whey, respectively. The effluent from the hydrogenogenic reactor was further digested to biogas in a continuous mesophilic anaerobic bioreactor. The anaerobic digester was operated at an HRT of 20d and produced approximately 1 L CH4/d, corresponding to a yield of 6.7 L CH4/L of influent. The chemical oxygen demand (COD) elimination reached 95.3% demonstrating that cheese whey could be efficiently used for hydrogen and methane production, in a two-stage process.  相似文献   

3.
Zhang Q  Tang L  Zhang J  Mao Z  Jiang L 《Bioresource technology》2011,102(4):3958-3965
In this study, the pretreatment of cassava residues by thermal-dilute sulfuric acid (TDSA) hydrolysis was investigated by means of a statistically designed set of experiments. A three-factor central composite design (CCD) was employed to identify the optimum pretreatment condition of cassava residues for methane production. The individual and interactive effects of temperature, H2SO4 concentration and reaction time on increase of methane yield (IMY) were evaluated by applying response surface methodology (RSM). After optimization, the resulting optimum pretreatment condition was 157.84 °C, utilizing 2.99% (w/w TS) H2SO4 for 20.15 min, where the maximum methane yield (248 mL/g VS) was 56.96% higher than the control (158 mL/g VS), which was very close to the predict value 56.53%. These results indicate the model obtained through RSM analysis is suit to predict the optimum pretreatment condition and there is great potential of using TDSA pretreatment of cassava residues to enhance methane yield.  相似文献   

4.
The objective of this work was to maximize the digestibility of biological sludge to elucidate the feasibility of a new sludge management strategy to recover good quality sludge for agricultural use. The combined effects of organic loading rates (from 0.7 to 2.8 g VS L−1 d−1) and the degree of disintegration by anaerobic digestion of sonicated activated sludge were discussed, and the thermal and energetic balances were evaluated. Despite low sonication inputs, sludge digestion performance improved in terms of solids degradation and biogas production depending on the soluble organic load. The biogas production by sonicated sludge was higher (up to 30%) with respect to the control. Filterability improved during digestion of sonicated sludge at medium OLR due to a significant abatement of the fines. Thermal balances indicated that sonication may be a proper system to guarantee self-sustaining WAS mesophilic digestion. Nevertheless, thickening is a pre-requisite to achieve a positive energy balance.  相似文献   

5.
The effect of electrodialytic treatment in terms of a current density, pH and Na2H2EDTA addition on the methanogenic activity of copper-amended anaerobic granular sludge taken from the UASB reactor from paper mill was evaluated. Moreover, the specific energy consumption and simplified operational and treatment costs were calculated. Addition of Na2H2EDTA (at pH 7.7) to copper-amended sludge resulted in the highest microbial activity (62 mg CH4-COD g VSS−1 day−1) suggesting that Na2H2EDTA decreased the toxic effects of copper on the methanogenic activity of the anaerobic granular sludge. The highest methane production (159 %) was also observed upon Na2H2EDTA addition and simultaneous electricity application (pH 7.7). The energy consumption during the treatment was 560, 840, 1400 and 1680 kW h m−3 at current densities of 0.23, 0.34, 0.57 and 0.69 mA cm−2, respectively. This corresponded to a treatment costs in terms of electricity expenditure from 39.2 to 117.6 € per cubic meter of sludge.  相似文献   

6.
Won SG  Lau AK 《Bioresource technology》2011,102(13):6876-6883
In this study, a series of tests were conducted in a 6 L anaerobic sequencing batch reactor (ASBR) to investigate the effect of pH, hydraulic retention time (HRT) and organic loading rate on biohydrogen production at 28 °C. Sucrose was used as the main substrate to mimic carbohydrate-rich wastewater and inoculum was prepared from anaerobic digested sludge without pretreatment. The reactor was operated initially with nitrogen sparging to form anaerobic condition. Results showed that methanogens were effectively suppressed. The optimum pH value would vary depending on the HRT. Maximum hydrogen production rate and yield of 3.04 L H2/L reactor d and 2.16 mol H2/mol hexose respectively were achieved at pH 4.5, HRT 30 h, and OLR 11.0 kg/m3 d. Two relationships involving the propionic acid/acetic acid ratio and ethanol/acetic acid ratio were derived from the analysis of the metabolites of fermentation. Ethanol/acetic acid ratio of 1.25 was found to be a threshold value for higher hydrogen production.  相似文献   

7.
Chang CJ  Tyagi VK  Lo SL 《Bioresource technology》2011,102(17):7633-7640
Individual and combined effects of microwave (MW) and alkali pretreatments on sludge disintegration and subsequent aerobic digestion of waste activated sludge (WAS) were studied. Pretreatments with MW (600 W-85 °C-2 min), conventional heating (520 W-80 °C-12 min) and alkali (1.5 g NaOH/L - pH 12-30 min) achieved 8.5%, 7% and 18% COD solubilization, respectively. However, combined MW-alkali pretreatment synergistically enhanced sludge solubilization and achieved 46% COD solubilization, 20% greater than the additive value of MW alone and alkali alone (8.5 + 18% = 26.5%). Moreover, the results of the batch aerobic digestion study on MW-alkali pretreated sludge showed 93% and 63% reductions in SCOD and VSS concentrations, respectively, at 16 days of SRT. The VSS reduction was 20% higher than that of WAS without pretreatment.  相似文献   

8.
Ethylene–vinyl acetate (EVA) copolymer was used to immobilize H2-producing sewage sludge for H2 production in a three-phase fluidized bed reactor (FBR). The FBR with an immobilized cell packing ratio of 10% (v/v) and a liquid recycle rate of 5 l/min (23% bed expansion) was optimal for dark H2 fermentation. The performance of the FBR reactor fed with sucrose-based synthetic medium was examined under various sucrose concentration (Cso) and hydraulic retention time (HRT). The best volumetric H2 production rate of 1.80 ± 0.02 H2 l/h/l occurred at Cso = 40 g COD/l and 2 h HRT, while the optimal H2 yield (4.26 ± 0.04 mol H2/mol sucrose) was obtained at Cso = 20 g COD/l and 6 h HRT. The H2 content in the biogas was stably maintained at 40% or above. The primary soluble metabolites were butyric acid and acetic acid, as both products together accounted for 74–83% of total soluble microbial products formed during dark H2 fermentation.  相似文献   

9.
To improve biogas yield and methane content in anaerobic digestion of excess sludge from the wastewater treatment plant, the sludge was disintegrated by using various methods (sonication, alkaline and thermal treatments). Since disintegrated sludge contains a high concentration of soluble proteins, the resulting metabolite, ammonia, may inhibit methane generation. Therefore, the effects of protein removal from disintegrated sludge on methane production were also studied. As a result, an obvious enhancement of biogas generation was observed by digesting disintegrated sludge (biogas yield increased from 15 to 36 ml/g CODadded·day for the raw excess sludge and the sonicated sludge, respectively). The quality of biogas was also improved by removing proteins from the disintegrated sludge. About 50% (w/w) of soluble proteins were removed from the suspension of disintegrated sludge by salting out using 35 g MgCl2·6H2O/l and also by isoelectric point precipitation at pH 3.3. For deproteinized sludge, methane production increased by 19%, and its yield increased from 145 ml/g CODremoved to 325 ml/g CODremoved. Therefore, the yield and quality of biogas produced from digestion of excess sludge can be enhanced by disintegrating the sludge and subsequent protein removal. Revisions requested 14 November 2005; Revisions received 13 January 2006  相似文献   

10.
A novel biomass-energy process for the production of methane from sewage sludge using a subcritical water (sub-CW) hydrolysis reaction as pretreatment is proposed. The main substances of sewage sludge hydrolyzed by sub-CW at 513 K for 10 min were acetic acid, formic acid, pyroglutamic acid, alanine, and glycine. Fermentation experiments were conducted in an anaerobic-sludge reactor for two different samples: real sewage sludge and a model solution containing components typically produced by the sub-CW pretreatment of sewage sludge. In the experiment for the sub-CW pretreatment of sewage sludge, methane generation was twice that for non-pretreatment after 3 days of incubation. In the model experiment, the methane conversion was about 40% with the application of mixture of organic acids and amino acids after 5 days of incubation. Furthermore, the methane conversion was about 60% for 2 days when only organic acids, such as acetic acid and formic acid, were applied. Because acetic acid is the key intermediate and main precursor of the methanogenesis step, fermentation experiments were conducted in an anaerobic-sludge reactor with high concentrations of acetic acid (0.01–0.1 M). Nearly 100% of acetic acid was converted to methane and carbon dioxide in 1–3 days.  相似文献   

11.
Three pretreatment methods were compared based on their ability to increase the extent and rate of anaerobic bioconversion of pulp mill secondary sludge to biogas. The pretreatment technologies used in these experiments were: (i) thermal pretreatment performed at 170 °C; (ii) thermochemical (caustic) pretreatment performed at pH 12 and 140 °C; and (iii) sonication performed at 20 kHz and 1 W mL−1. Sludge samples were obtained from a sulfite and a kraft pulp mill, and biochemical methane potential (BMP) assays were performed using microbial granules obtained from a high-rate anaerobic digester operating at a pulp mill. Biogas production from untreated sludge was 0.05 mL mg−1 of measured chemical oxygen demand (COD) and 0.20 mL mg−1 COD for kraft and sulfite sludge, respectively. Thermal pretreatment had the highest impact on sludge biodegradability. In this case, biogas yield and production rate from sulfite sludge increased by 50% and 10 times, respectively, while biogas yield and production rate from kraft sludge increased by 280% and 300 times, respectively. Biogas yield correlated to soluble carbohydrate content better than soluble COD.  相似文献   

12.
Microwave (2450 MHz, 1250 W), ultrasonic (20 kHz, 400 W) and chemo-mechanical (MicroSludge® with 900 mg/L NaOH followed by 83,000 kPa) pretreatments were applied to pulp mill waste sludge to enhance methane production and reduce digester sludge retention time. The effects of four variables (microwave temperature in a range of 50-175 °C) and sonication time (15-90 min), sludge type (primary or secondary) and digester temperature (mesophilic and thermophilic) were investigated. Microwave pretreatment proved to be the most effective, increasing specific methane yields of WAS samples by 90% compared to controls after 21 days of mesophilic digestion. Sonication solubilized the sludge samples better, but resulted in soluble non-biodegradable compounds. Based on the laboratory scale data, MicroSludge® was found the least energy intensive pretreatment followed by sonication for 15 min alternative with net energy profits of 1366 and 386 kWh/tonne of total solids (TS), respectively. Pretreatment benefits were smaller for thermophilic digesters.  相似文献   

13.
添加厨余垃圾对剩余污泥厌氧消化产沼气过程的影响   总被引:4,自引:0,他引:4  
为提高剩余污泥厌氧消化的沼气产量和甲烷含量,研究了厨余垃圾的不同添加量对剩余污泥厌氧消化性能的影响。结果表明,在35℃下,随着剩余污泥中厨余垃圾添加量的增加,厌氧消化系统中碳氮质量比(C/N)、胞外多聚物(EPS)等生理生化指标均有不同程度的改善。其中当剩余污泥与厨余垃圾质量比为2:1时,混合有机废弃物中沼气产量和甲烷含量均达到最大值,每克挥发性固体(VS)产生了156.56mL沼气,甲烷体积分数为67.52%,分别比剩余污泥单独厌氧消化时的产气量提高了5倍和1.5倍。  相似文献   

14.
This study demonstrated that partial nitritation using nitrifying activated sludge entrapped in a polyethylene glycol (PEG) gel carrier, as a pretreatment to anammox process, could be successfully applied to digester liquor of biogas plant at a nitrogen loading rate of 3.0 kg-N/m3/d. The nitritation process produced an effluent with a NO2–N/NH4–N ratio between 1.0 and 1.4, which was found to be suitable for the subsequent anammox process. A high SS concentration (2000–3000 mg/l) in the digester liquor did not affect partial nitritation treatment performances. Effluent from this partial nitritation reactor was successfully treated in the anammox reactor using anammox sludge entrapped in the PEG gel carrier with T-N removal rates of greater than 4.0 kg-N/m3/d. Influent BOD and SS contents did not inhibit anammox activity of the anammox gel carrier. The combination of partial nitritation and anammox reactors using PEG entrapped nitrifying and anammox bacteria was shown to be effective for the removal of high concentration ammonium in the digester liquor of a biogas plant.  相似文献   

15.
Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88 ± 8 L (49 ± 5 L CH4) and 96 ± 19 L (65 ± 14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD = 254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters.  相似文献   

16.
This study examines the co-digestion of intermediate landfill leachate and sewage sludge from a municipal wastewater treatment plant. Application of leachate as a co-fermentation component increased the concentrations of soluble organic compounds (expressed as total organic carbon), ammonium nitrogen, and alkalinity in the digester influents.The biogas yield obtained from the co-fermentation of a 20:1 sewage sludge: intermediate leachate mixture was 1.30 m3 per kg of removed volatile solids (VS), while that from a 10:1 mixture was 1.24 m3 per kg of removed VS. These values exceeded the biogas yield for the sludge alone by 13% and 8%, respectively. The leachate addition influenced the proportion of methane to a minor extent. Increased methane yields of 16.9% and 6.2% per kg of removed VS were found for the two sewage sluge:intermediate leachate mixtures, respectively.  相似文献   

17.
Six new adducts of the form AgX:PPh3:H2C(pzx)2 (1:1:1) (H2C(pzx)2 = H2C(pz)2 = bis(pyrazolyl)methane or H2C(pzMe2)2 = bis(3,5-dimethylpyrazolyl)methane; X = ClO4, NO3, SO3CF3) have been synthesized and characterized by analytical, spectroscopic (IR, far-IR, 1H and 31P NMR) and two of them also by single crystal X-ray diffraction studies for comparison with counterpart adducts with 2,2′-bipyridyl (‘bpy’) derivatives reported in a previous paper, the bpy-derived ligands forming five-membered chelate rings, while the present H2C(pzx)2 should, potentially, form six-membered rings. Such is the case, the two adducts exhibiting quasi-planar N2AgP coordination environments, perturbed by the approach of the oxyanion, unidentate in the case of the perchlorate but, in the case of the nitrate, an interesting disordered aggregate of differing unidentate modes.  相似文献   

18.
The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89 ml-H2/g-VS (190 ml-H2/g-sugars) and 307 ml-CH4/g-VS, respectively were achieved simultaneously with the overall VS removal efficiency of 81% by operating with total hydraulic retention time (HRT) of 4 days . The energy conversion efficiency was dramatically increased from only 7.5% in the hydrogen stage to 87.5% of the potential energy from hydrolysate, corresponding to total energy of 13.4 kJ/g-VS. Dominant hydrogen-producing bacteria in the H2-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH4-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results from this study suggest the two stage anaerobic process can be effectively used for energy recovery and for stabilization of hydrolysate at anaerobic conditions.  相似文献   

19.
Microwave (MW) irradiation is a relatively new possibility of conditioning and pretreating for wastewater sludge. Following its application in the telecommunications and food-industries, the environmental use of this technique has come into the limelight in recent years, and has become increasingly popular. Various publications have dealt with the examination of the effects of MW irradiation in municipal sludge-handling processes. We focused on the effects of MW irradiation at different power levels on solubilization (sCOD/tCOD), biodegradation and anaerobic digestion of sludge from the food-industry. For evaluating the efficiency of MW pre-treatment, the changes in the soluble fraction of the organic matter, the VS/TS ratio, the biogas yield, the methane content in the biogas, and the rate of batch mesophilic digestion were used as control parameters. Additionally, the energetic efficiency of MW pre-treatment was also examined. The results were compared with those of conventional heat (CH) treatments of the same sludge. The MW treatment proved to increase both the sCOD/tCOD and the VS/TS ratio. Furthermore, the biogas and methane yields increased during the digestion of the MW-pretreated food-industry sludge. A higher MW power level generally enhanced the biogas and methane production. Energetically, the most economic pre-treatment of sludge from dairy and meat processing was at a power level of 1.5 Wg−1 and 2.5 Wg−1 MW respectively; the surplus energy content of the enhanced biogas product could not compensate the extra energy demand of the stronger MW pre-treatments.  相似文献   

20.
Recently, bioenergy recovery from sludge biomass has attracted increasing attention due to the high demand for renewable energy resources. In order to enhance methane production from sludge biomass, electrochemical treatment can be used as a novel and efficient pretreatment for the hydrolysis of sludge biomass. In this study, a combined electro-flotation and electro-oxidation pretreatment was employed to improve the anaerobic degradability of sludge biomass. Electro-flotation was efficient in separating flocs in the mixed liquor and led to a sludge volume reduction greater than 60% after 10 min of operation at a current density of 4.72 mA cm−2. Electro-oxidation using IrO2/Ti anode was performed to improve the anaerobic degradability of sludge and resulted in a 30% increase in COD solubilization after 30 min of operation at current density of 9.45 mA cm−2. The factors affecting electro-oxidation, i.e. the gap width between anode and cathode, current density and applied voltage, were investigated to optimize the operating conditions. A biochemical methane potential assay demonstrated that the anaerobic biodegradability of sludge was enhanced by combined electro-flotation and electro-oxidation pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号