首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Intracerebroventricular (ICV) injections of prostacyclin (PGI2) produced biphasic blood pressure responses consisting of an initial hypotensive phase followed by a sustained pressor phase in awake rats. Heart rate increased following such injections in either awake or anesthetized rats. PGI2, 1 microgram, produced biphasic responses and, 10 micrograms, purely vasodepressor responses in anesthetized rats, but abdominal sympathetic nerve firing recorded was consistently increased. Hypophysectomy did not affect the hypotensive phase of the responses. These results indicate that the initial hypotension can not be explained by centrally-induced changes in sympathetic nerve activity or vasopressin release, but may be due to peripheral effects of PGI2 leaking from the injection site.  相似文献   

2.
在清醒雄性大鼠中经静脉抽出血液总量的约50%,造成失血性低血压。对照组大鼠在失血后不予处理。刺激组大鼠在失血后半小时用低频电脉冲刺激坐骨神经30min。刺激组动物的平均动脉压在刺激肘和刺激停止后2小时内均显著高于对照组。在同时记录内脏神经放电的动物中还看到,刺激坐骨神经时交感神经活动显著加强。这可能和血压、心率的恢复有关。在失血动物中刺激坐骨神经引起的升压效应不能被静脉内注射纳洛酮(8mg/kg)翻转;预先注射纳洛酮也不能阻断这种升压效应。在用水合氯醛麻醉的大鼠中,失血后刺激坐骨神经仍能引起升压反应。但如在刺激坐骨神经前静脉注射东莨菪碱(8—20mg/kg),则在多数动物中上述升压反应的幅度显著减小,甚至消失。实验结果表明,在失血性低血压的大鼠中,刺激坐骨神经可促进机体代偿反应,进一步加强交感神经活动,有利于血压的恢复。这一效应可能需要胆硷能递质参与,而内啡肽系统似乎不起重要作用。  相似文献   

3.
Frequency-domain analyses were used to determine the effect of cold stress on the relationships between the discharge bursts of sympathetic nerve pairs, sympathetic and aortic depressor nerve pairs, and sympathetic and phrenic nerve pairs in chloralose-anesthetized, baroreceptor-innervated rats. Sympathetic nerve discharge (SND) was recorded from the renal, lumbar, splanchnic, and adrenal nerves during decreases in core body temperature from 38 to 30 degrees C. The following observations were made. 1) Hypothermia produced nonuniform changes in the level of activity in regionally selective sympathetic nerves. Specifically, cold stress increased lumbar and decreased renal SND but did not significantly change the level of activity in splanchnic and adrenal nerves. 2) The cardiac-related pattern of renal, lumbar, and splanchnic SND bursts was transformed to a low-frequency (0-2 Hz) pattern during cooling, despite the presence of pulse-synchronous activity in arterial baroreceptor afferents. 3) Peak coherence values relating the discharges between sympathetic nerve pairs decreased at the cardiac frequency but were unchanged at low frequencies (0-2 Hz), indicating that the sources of low-frequency SND bursts remain prominently coupled during progressive reductions in core body temperature. 4) Coherence of discharge bursts in phrenic and renal sympathetic nerve pairs in the 0- to 2-Hz frequency band increased during mild hypothermia (36 degrees C) but decreased during deep hypothermia (30 degrees C). We conclude that hypothermia profoundly alters the organization of neural circuits involved in regulation of sympathetic nerve outflow to selected regional circulations.  相似文献   

4.
To establish a functional link between the ventromedial hypothalamus (VMH) and brown adipose tissue (BAT), effects of electrical stimulation of the VMH and the lateral hypothalamus (LH) on norepinephrine (NE) turnover in the interscapular BAT were examined in rats. Stimulation of the VMH elicited about 3-fold increase in the rate of NE turnover in BAT, whereas stimulation of the LH had no appreciable effects. The effect of VMH stimulation was abolished after sympathetic ganglion blockade or by surgical sympathetic denervation of BAT. It was concluded that there is a sympathetic nerve-mediated connection between the VMH and BAT, and that stimulation of the VMH induces metabolic activation and heat production in BAT through an increase in sympathetic nerve activity.  相似文献   

5.
To determine the organization of presympathetic vasomotor drive by phenotypic populations of rostral ventrolateral medulla (RVLM) neurons, we examined the somatosympathetic reflex (SSR) evoked in four sympathetic nerves together with selective lesions of RVLM presympathetic neurons. Urethane-anesthetized (1.3 g/kg ip), paralyzed, vagotomized and artificially ventilated Sprague-Dawley rats (n = 41) were used. First, we determined the afferent inputs activated by sciatic nerve (SN) stimulation at graded stimulus intensities (50 sweeps at 0.5-1 Hz, 1-80 V). Second, we recorded sympathetic nerve responses (cervical, renal, splanchnic, and lumbar) to intensities of SN stimulation that activated A-fiber afferents (low) or both A- and C-fiber afferents (high). Third, with low-intensity SN stimulation, we examined the cervical SSR following RVLM microinjection of somatostatin, and we determined the splanchnic SSR in rats in which presympathetic C1 neurons were lesioned following intraspinal injections of anti-dopamine-β-hydroxylase-saporin (anti-DβH-SAP). Low-intensity SN stimulation activated A-fiber afferents and evoked biphasic responses in the renal, splanchnic, and lumbar nerves and a single peak in the cervical nerve. Depletion of presympathetic C1 neurons (59 ± 4% tyrosine hydroxylase immunoreactivity profiles lesioned) eliminated peak 2 of the splanchnic SSR and attenuated peak 1, suggesting that only RVLM neurons with fast axonal conduction were spared. RVLM injections of somatostatin abolished the single early peak of cervical SSR confirming that RVLM neurons with fast axonal conduction were inhibited by somatostatin. It is concluded that unmyelinated RVLM presympathetic neurons, presumed to be all C1, innervate splanchnic, renal, and lumbar but not cervical sympathetic outflows, whereas myelinated C1 and non-C1 RVLM neurons innervate all sympathetic outflows examined. These findings suggest that multiple levels of neural control of vasomotor tone exist; myelinated populations may set baseline tone, while unmyelinated neurons may be recruited to provide actions at specific vascular beds in response to distinct stressors.  相似文献   

6.
M Iwai  T Shimazu 《Life sciences》1988,42(19):1833-1840
The effects of hypothalamic stimulation on experimental liver injury induced by carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN) were studied in rats, by measuring plasma alanine aminotransferase (ALT) activity as an index of acute liver injury. Electrical stimulation of the ventromedial hypothalamus (VMH) in CCl4-treated rats caused a marked increase in plasma ALT activity, accompanied by a significant decrease in ALT activity in the liver, although CCl4 treatment alone had no significant effect on plasma ALT activity. A similar effect of VMH stimulation on plasma ALT activity was observed in rats treated with DMN, another hepatotoxic chemical. No such exaggerated effect of VMH stimulation on plasma ALT activity was observed after stimulation of the lateral hypothalamic area (LH). Surgical sympathetic denervation of the liver greatly suppressed the increase in plasma ALT activity after CCl4 injection and VMH stimulation. Measurement of regional blood flow indicated that VMH stimulation did not produce a significant change in blood flow to the liver. These results suggest that the VMH is involved in the progress of chemically-induced liver injury through activation of the sympathetic nerve (hepatic nerves), possibly by affecting liver metabolism more than the blood flow change to the liver.  相似文献   

7.
Electrical stimulation of the pontine nucleus locus coeruleus (LC) caused an increase of the arterial blood pressure in anesthetized rats, and elevated plasma noradrenaline (NA) and adrenaline (A) levels. The stimulation-induced pressor response was characteristically biphasic and consisted of a sharp rise in arterial pressure at the onset of the stimulation, followed by a second elevation at the end of the stimulus. Bilateral adrenalectomy or adrenal demedullation completely blocked the secondary phase of the pressor response elicited by stimulation, but did not affect the primary phase. The latter was specifically eliminated by the destruction of the peripheral sympathetic vasomotor axons with intravenous 6-hydroxydopamine (6-OHDA). The active sites eliciting the secondary adrenomedullary pressor component appeared to be restricted to the nucleus LC, whereas the primary sympathetic vasomotor response could be elicited from sites in and around the nucleus. After brain transection at the midbrain level, stimulation of LC failed to evoke the adrenomedullary pressor response, while the sympathetic vasomotor component was not affected. Similarly, destruction of brain NA neurons by intraventricular administration of 6-OHDA did not change the sympathetic vasomotor response, but virtually abolished the adrenal response. The results demonstrate that the pressor response to stimulation of LC in the rat is due to both increased sympathetic vasomotor activity and CA released from the adrenal medulla. The study also provides evidence suggesting that the noradrenergic LC cell group play an important role in the activation of the adrenal medulla, but is not essential for the activation of the sympathetic vasoconstrictor fiber system.  相似文献   

8.
The gastrointestinal hormone CCK inhibits a subset of presympathetic neurons in the rostroventrolateral medulla (RVLM) that may be responsible for driving the sympathetic vasomotor outflow to the gastrointestinal circulation. We tested the hypothesis that the central neurocircuitry of this novel sympathoinhibitory reflex involves a relay in the caudal ventrolateral medullary (CVLM) depressor area. Blood pressure and greater splanchnic sympathetic nerve discharge (SSND) or lumbar sympathetic nerve discharge (LSND) were monitored in anesthetised, paralyzed male Sprague-Dawley rats. The effects of phenylephrine (PE, 10 microg/kg iv; baroreflex activation), phenylbiguanide (PBG, 10 microg/kg iv; von Bezold-Jarisch reflex) and CCK (4 or 8 microg/kg iv) on SSND or LSND, were tested before and after bilateral injection of 50-100 nl of the GABAA agonist muscimol (1.75 mM; n=6, SSND; n=7, LSND) or the excitatory amino acid antagonist kynurenate (55 mM; n=7, SSND) into the CVLM. PE and PBG elicited splanchnic and lumbar sympathoinhibitory responses that were abolished by bilateral muscimol or kynurenate injection into the CVLM. Similarly, the inhibitory effect of CCK on SSND was abolished after neuronal inhibition within the CVLM. In contrast, CCK-evoked lumbar sympathoexcitation was accentuated following bilateral CVLM inhibition. In control experiments (n=7), these agents were injected outside the CVLM and had no effect on splanchnic sympathoinhibitory responses to PE, PBG, and CCK. In conclusion, neurons in the CVLM are necessary for the splanchnic but not lumbar sympathetic vasomotor reflex response to CCK. This strengthens the view that subpopulations of RVLM neurons supply sympathetic vasomotor outflow to specific vascular territories.  相似文献   

9.
10.
Previously, we have shown that activation of adenosine A(2a) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of the selective A(2a) receptor agonist CGS-21680 elicits potent, dose-dependent decreases in mean arterial pressure and preferential, marked hindlimb vasodilation. Although A(2a) receptor activation does not change lumbar sympathetic nerve activity, it does markedly enhance the preganglionic adrenal sympathetic nerve activity, which will increase epinephrine release and could subsequently elicit hindlimb vasodilation via activation of beta(2)-adrenergic receptors. Therefore we investigated whether this hindlimb vasodilation was due to neural or humoral mechanisms. In chloralose-urethan-anesthetized male Sprague-Dawley rats, we monitored cardiovascular responses to stimulation of NTS adenosine A(2a) receptors (CGS-21680, 20 pmol/50 nl) in the intact control animals; after pretreatment with propranolol (2 mg/kg iv), a beta-adrenergic antagonist; after bilateral lumbar sympathectomy; after bilateral adrenalectomy; and after combined bilateral lumbar sympathectomy and adrenalectomy. After beta-adrenergic blockade, stimulation of NTS adenosine A(2a) receptors produced a pressor response and a hindlimb vasoconstriction. Lumbar sympathectomy reduced the vasodilation seen in the intact animals by approximately 40%, and adrenalectomy reduced it by approximately 80%. The combined sympathectomy and adrenalectomy virtually abolished the hindlimb vasodilation evoked by NTS A(2a) receptor activation. We conclude that the preferential, marked hindlimb vasodilation produced by stimulation of NTS adenosine A(2a) receptors is mediated by both the efferent sympathetic nerves directed to the hindlimb and the adrenal glands via primarily a beta-adrenergic mechanism.  相似文献   

11.
During exercise, sympathetic nerve responses are accentuated in heart failure (HF), and this enhances norepinephrine (NE) release and evokes vasoconstriction. Two key pathophysiological responses could contribute to the greater NE release: 1) increased sympathetic nerve discharge and 2) increased NE in the neurovascular junction for a given level of sympathetic discharge. In this report, we focus on the second of these two general issues and test the following hypotheses: 1) in HF for a given level of sympathetic nerve stimulation, NE concentration in the interstitium (an index of neurovascular NE) would be greater, and 2) the greater interstitial NE concentration would be linked to reduced NE uptake. Studies were performed in rats 8-10 wk after induction of myocardial infarction (MI). Interstitial NE samples were collected from microdialysis probes inserted into the hindlimb muscle. Dialysate concentration of NE was determined by the HPLC method. First, interstitial NE concentration increased during electrical stimulation of the lumbar sympathetic nerves in eight control rats. An increase in interstitial NE concentration was significantly greater in 10 rats with severe MI. Additionally, an NE uptake-1 inhibitor (desipramine, 1 microM) was injected into the arterial blood supply of the muscle in six control and eight MI rats. Desipramine increased interstitial NE concentration by 24% in control and by only 3% (P < 0.05 vs. control) in MI rats. In conclusion, given levels of electrical stimulation of the lumbar sympathetic nerve lead to higher interstitial NE concentration in HF. This effect is due, in part, to reduced NE uptake-1 in HF.  相似文献   

12.
The present study was designed to investigate brain stem responses to manual acupuncture (MA) and electroacupuncture (EA) at different frequencies at pericardial P (5-6) acupoints located over the median nerve. Activity of premotor sympathetic cardiovascular neurons in the rostral ventral lateral medulla (rVLM) was recorded during stimulation of visceral and somatic afferents in ventilated anesthetized rats. We stimulated either the splanchnic nerve at 2 Hz (0.1-0.4 mA, 0.5 ms) or the median nerve for 30 s at 2, 10, 20, 40, or 100 Hz using EA (0.3-0.5 mA, 0.5 ms) or at approximately 2 Hz with MA. Twelve of 18 cells responsive to splanchnic and median nerve stimulation could be antidromically driven from the intermediolateral columns of the thoracic spinal cord, T2-T4, indicating that they were premotor sympathetic neurons. All 18 neurons received baroreceptor input, providing evidence of their cardiovascular sympathoexcitatory function. Evoked responses during stimulation of the splanchnic nerve were inhibited by 49 +/- 6% (n = 7) with EA and by 46 +/- 4% (n = 6) with MA, indicating that the extent of inhibitory effects of the two modalities were similar. Inhibition lasted for 20 min after termination of EA or MA. Cardiovascular premotor rVLM neurons responded to 2-Hz electrical stimulation at P 5-6 and to a lesser extent to 10-, 20-, 40-, and 100-Hz stimulation (53 +/- 10, 16 +/- 2, 8 +/- 2, 2 +/- 1, and 0 +/- 0 impulses/30 stimulations, n = 7). These results indicate that rVLM premotor sympathetic cardiovascular neurons that receive convergent input from the splanchnic and median nerves during low-frequency EA and MA are inhibited similarly for prolonged periods by low-frequency MA and EA.  相似文献   

13.
The sympathetic nervous system is essential for the cardiovascular responses to stimulation of visceral afferents. It remains unclear how the reflex-evoked sympathetic output is distributed to different vascular beds to initiate the hemodynamic changes. In the present study, we examined changes in regional sympathetic nerve activity and blood flows in anesthetized cats. Cardiovascular reflexes were induced by either electrical stimulation of the right splanchnic nerve or application of 10 microg/ml of bradykinin to the gallbladder. Blood flows were measured using colored microspheres or the Transonic flow meter system. Sympathetic efferent activity was recorded from the left splanchnic, inferior cardiac, and tibial nerves. Stimulation of visceral afferents decreased significantly blood flows in the celiac (from 49 +/- 4 to 25 +/- 3 ml/min) and superior mesenteric (from 35 +/- 4 to 23 +/- 2 ml/min) arteries, and the vascular resistance in the splanchnic bed was profoundly increased. Consistently, stimulation of visceral afferents decreased tissue blood flows in the splanchnic organs. By contrast, activation of visceral afferents increased significantly blood flows in the coronary artery and portal vein but did not alter the vascular resistance of the femoral artery. Furthermore, stimulation of visceral afferents increased significantly sympathetic efferent activity in the splanchnic (182 +/- 44%) but not in the inferior cardiac and tibial nerves. Therefore, this study provides substantial new evidence that stimulation of abdominal visceral afferents differentially induces sympathetic outflow to the splanchnic vascular bed.  相似文献   

14.
Central α-adrenergic mechanisms of blood pressure regulation were investigated by injecting norepinephrine or bradykinin into the carotid input of the cross-circulated head preparations of normotensive Wistar Kyoto rats (WKY). Rats were divided into three groups: sham-operated (sham), carotid sinuses denervated (SD) and carotid sinuses and aortic nerves debuffered (SAD). Norepinephrine, 5 μg, produced vasodepression in all rats, accompanied by corresponding decreases in sympathetic nerve activity recorded in some rats. Magnitude of vasodepression was largest in SAD rats. In sham rats, bradykinin, 1 μg, produced a biphasic response:initial vasodepression followed by a sustained pressor phase. This was accompanied by corresponding changes in peripheral sympathetic nerve activity recorded in some rats. In both SAD and SD rats bradykinin-induced vasodepression was abolished, while the magnitude of the pressor phase became more prominent. The increase in the pressor phase was greater in SAD than in SD rats. In similar studies of spontaneously hypertensive rats (SHR), responses to both α-adrenergic agonist and bradykinin are augmented, suggesting a dysfunction of hypothalamic α-adrenergic mechanisms. Since in the present study it has been shown that sino-aortic denervation produces effects similar to those seen in SHR, dysfunction of buffer nerves may account for the deficient central α-adrenergic mechanisms in SHR.  相似文献   

15.
Adrenal and nonadrenal sympathetic preganglionic neurones (SPNs) in the intermediolateral nucleus of spinal segments T8-T10 in the cat were compared according to a number of physiological properties. An SPN was classified as "adrenal" (n = 37) if it could be antidromically activated by electrical stimulation of the adrenal medulla. An SPN that could not be activated from the adrenal medulla yet could be antidromically activated by electrical stimulation of the greater splanchnic nerve was classified as "nonadrenal" (n = 123). Approximately 50% of adrenal SPNs (17 out of 37) were activated antidromically by stimulation of both the greater splanchnic nerve and adrenal medulla, suggesting that these neurones projected to the adrenal medulla via the greater splanchnic nerve, with the other adrenal SPNs taking a different route. The mean conduction velocities of adrenal (6.7 +/- 1.8 (SD) m/s) and nonadrenal (6.7 +/- 1.5 m/s) sympathetic preganglionic axons were similar. Over 80% of adrenal (31 out of 37) and nonadrenal (104 out of 116) SPNs were spontaneously active. The two types of neurone were indistinguishable in terms of the rates and patterns of discharge. Adrenal SPNs discharged with a mean rate of 1.4 +/- 1.1 spikes/s, and nonadrenal SPNs discharged with a mean rate of 1.8 +/- 1.4 spikes/s. With both types of SPN, the pattern of spontaneous activity was either irregular or phasic. With the latter pattern, periodic bursts of discharge were at the same frequency as oscillations in arterial pressure, frequency of ventilation, or phrenic nerve discharge. These data suggest that adrenal and nonadrenal sympathetic preganglionic neurones in the intermediolateral nucleus in caudal thoracic segments share a number of common physiological properties.  相似文献   

16.
Responses of upper cervical inspiratory neurons (UCINs) to abdominal visceral or cardiopulmonary sympathetic stimulation were studied using extracellular recordings from 213 UCINs in 54 pentobarbital sodium-anesthetized and paralyzed rats. Phrenic nerve activity was used to assess inspiration. The UCINs discharging during inspiration only were mainly in the C(1) segment, whereas phase-spanning UCINs were mostly in the C(2) segment. Phase-spanning activity was typically retained after overventilation or vagotomy. When greater splanchnic nerve (GSN) or cardiopulmonary sympathetic afferent (CPSA) fibers were electrically stimulated, augmented UCIN activity was observed in 65% of cells responding to CPSA stimulation but in only 17% of cells responding to GSN. Response latencies were 10.7 +/- 0.5 and 20.6 +/- 1.5 (SE) ms, respectively. Many augmented responses to CPSA stimulation (64%) and all augmented responses to GSN stimulation were followed by suppression of UCIN discharge (biphasic response). Phrenic nerve activity was suppressed by both GSN and CPSA stimulation, but with shorter latency for the latter (29 +/- 0.7 vs. 14.0 +/- 0.7 ms). Excitation of UCINs using CPSA stimulation occurs more often and by a more direct pathway than for GSN input.  相似文献   

17.
Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the response to stimulation of NTS A1 receptors is mediated mostly via circulating factors (e.g., vasopressin, angiotensin II, or circulating catecholamines released from other sympathetic terminals). These data strongly suggest that stimulation of NTS A1 receptors exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and beta-adrenergic vasodilation versus vasoconstriction mediated by neural and humoral factors.  相似文献   

18.
刺激兔下丘脑室旁核诱发的心律失常与增压反应   总被引:2,自引:0,他引:2  
在60只局麻与肌松剂制动的家兔,观察到用0.1—0.4mA,50Hz,1ms 的方波电刺激下丘脑室旁核(PV)能诱发频发性心律失常(包括室性与室上性期前收缩)及显著的动脉血压升高。与同侧的下丘脑外侧区(LHA)及腹内侧核(VMH)相比,刺激PV诱发期前收缩的次数更为频繁,增压反应幅度较大,且所需阈值亦较低。较低强度刺激LHA 在部分兔能引起血压下降与心率减慢,而PV 则一致地诱发增压反应。电刺激腓深神经能抑制刺激PV诱发的期前收缩,但在中脑中央灰质微量注射吗啡或电解毁损只能完全阻断刺激VMH诱发的期前收缩,而不能完全阻断PV诱发的期前收缩。这些结果提示,PV是下丘脑中诱发心律失常与血压增高的高反应区之一,并且可能具有不同于LHA或VMH的神经机制或下行神经通路。  相似文献   

19.
Neurons in the caudal pressor area (CPA) are a source of tonic sympathoexcitation that is dependent on activation of cardiovascular sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM). In the present study, we sought to clarify the mechanism through which CPA neurons elicit increases in RVLM neuronal discharge, vasoconstrictor sympathetic tone, and arterial pressure. In urethan-chloralose-anesthetized, paralyzed, and artificially ventilated rats, bilateral disinhibition of CPA with bicuculline (Bic) after bilateral disinhibition of caudal ventrolateral medulla (CVLM) caused increases in splanchnic sympathetic nerve activity (+277% control) and arterial pressure (+54 mmHg). Inhibition of CVLM neurons with muscimol abolished the pressor response to activation of CPA neurons, suggesting that neurons within CVLM mediate the excitatory responses from CPA. Disinhibition of CVLM and CPA with Bic enhanced the sympathoexcitatory responses to stimulation of CPA with DL-homocysteic acid, which were blocked by microinjections of kynurenic acid into CVLM. We conclude that the pathway from CPA to RVLM involves an obligatory glutamatergic activation of sympathoexcitatory neurons in the vicinity of CVLM.  相似文献   

20.
Intravenous injection of substance P (SP) increases renal nerve firing and heart rate in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) by stimulating sympathetic ganglia. Blood pressure is increased in SHRs but lowered in WKYs. This study assesses the role of neurokinin-1 (NK(1)) receptors in mediating the ganglion actions of SP. Rats for functional studies were anesthetized and then treated with chlorisondamine. Renal nerve, blood pressure, and heart rate responses to intravenous injection of the NK(1) receptor agonist GR-73632 were similar but less than those to equimolar doses of SP in SHRs. GR-73632 only slightly increased renal nerve firing and heart rate and lowered blood pressure in WKYs. The NK(1) receptor antagonist GR-82334 (200 nmol/kg iv) blocked the ganglionic actions of GR-73632 and the pressor response to SP in SHRs. It reduced the renal nerve and heart rate responses by 52 and 35%. This suggests that the pressor response to SP is mediated by ganglionic NK(1) receptors and that NK(1) receptors also have a prominent role in mediating the renal nerve and heart rate responses to SP. Quantitative autoradiography showed that NK(1) receptors are more abundant in the superior cervical ganglia of SHRs. RT-PCR showed increased abundance of NK(1) receptor mRNA in SHRs as well. These observations suggest that the greater ganglionic stimulation caused by SP in SHRs is due to upregulation of NK(1) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号