首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The floodplain of the Amazon River is a large source for the greenhouse gas methane, but the soil microbial communities and processes involved are little known. We studied the structure and function of the methanogenic microbial communities in soils across different inundation regimes in the Cunia Reserve, encompassing nonflooded forest soil (dry forest), occasionally flooded Igapo soils (dry Igapo), long time flooded Igapo soils (wet Igapo) and sediments from Igarape streams (Igarape). We also investigated a Transect (four sites) from the water shoreline into the dry forest. The potential and resilience of the CH4 production process were studied in the original soil samples upon anaerobic incubation and again after artificial desiccation and rewetting. Bacterial and archaeal 16S rRNA genes and methanogenic mcrA were always present in the soils, except in dry forest soils where mcrA increased only upon anaerobic incubation. NMDS analysis showed a clear effect of desiccation and rewetting treatments on both bacterial and archaeal communities. However, the effects of the different sites were less pronounced, with the exception of Igarape. After anaerobic incubation, methanogenic taxa became more abundant among the Archaea, while there was only little change among the Bacteria. Contribution of hydrogenotrophic methanogenesis was usually around 40%. After desiccation and rewetting, we found that Firmicutes, Methanocellales and Methanosarcinaceae became the dominant taxa, but rates and pathways of CH4 production stayed similar. Such change was also observed in soils from the Transects. The results indicate that microbial community structures of Amazonian soils will in general be strongly affected by flooding and drainage events, while differences between specific field sites will be comparatively minor.  相似文献   

2.
s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50?μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils.  相似文献   

3.
We investigated the microbial community structure and population size of arboreal soils—including canopy and bromeliad epiphytic leaf-tank soils—and ground soils in a tropical lowland rainforest in Costa Rica using molecular and cultivation methods. PCR-DGGE analysis of 16S rRNA and 18S rRNA gene fragments and quantitative real-time PCR were applied to survey the bacteria, ammonia-oxidizing bacteria (AOB), and fungi. Bacteria from epiphytic tank soils were isolated and identified. Bacillaceae, Pseudomonadaceae and Micrococcaceae were the most abundant families. According to cluster analysis of DGGE fingerprints a significant difference among the three soil types was evident for bacterial communities. In addition, the microbial communities of canopy and tank soils clustered apart from ground soils. The fungal and AOB communities were diverse but non-specific for the soil types analyzed.  相似文献   

4.
Forest-to-pasture conversion is known to cause global losses in plant and animal diversity, yet impacts of livestock management after such conversion on vital microbial communities in adjoining natural ecosystems remain poorly understood. We examined how pastoral land management practices impact soil microorganisms in adjacent native forest fragments, by comparing bacterial communities sampled along 21 transects bisecting pasture–forest boundaries. Our results revealed greater bacterial taxon richness in grazed pasture soils and the reduced dispersal of pasture-associated taxa into adjacent forest soils when land uses were separated by a boundary fence. Relative abundance distributions of forest-associated taxa (i.e., Proteobacteria and Nitrospirae) and a pasture-associated taxon (i.e., Firmicutes) also suggest a greater impact of pastoral land uses on forest fragment soil bacterial communities when no fence is present. Bacterial community richness and composition were most related to changes in soil physicochemical variables commonly associated with agricultural fertilization, including concentrations of Olsen P, total P, total Cd, delta 15N and the ratio of C:P and N:P. Overall, our findings demonstrate clear, and potentially detrimental effects of agricultural disturbance on bacterial communities in forest soils adjacent to pastoral land. We provide evidence that simple land management decisions, such as livestock exclusion, can mitigate the effects of agriculture on adjacent soil microbial communities.  相似文献   

5.
6.
The bacterial community compositions in Chenopodium album and Stellaria media seeds recovered from soil (soil weed seedbank), from bulk soil, and from seeds harvested from plants grown in the same soils were compared. It was hypothesized that bacterial communities in soil weed seedbanks are distinct from the ones present in bulk soils. For that purpose, bacterial polymerase chain reaction denaturing gradient gel electrophoresis (PCR–DGGE) fingerprints, made from DNA extracts of different soils and seed fractions, were analyzed by principal component analysis. Bacterial fingerprints from C. album and S. media seeds differed from each other and from soil. Further, it revealed that bacterial fingerprints from soil-recovered and plant-harvested seeds from the same species clustered together. Hence, it was concluded that microbial communities associated with seeds in soil mostly originated from the mother plant and not from soil. In addition, the results indicated that the presence of a weed seedbank in arable soils can increase soil microbial diversity. Thus, a change in species composition or size of the soil weed seedbank, for instance, as a result of a change in crop management, could affect soil microbial diversity. The consequence of increased diversity is yet unknown, but by virtue of identification of dominant bands in PCR–DGGE fingerprints as Lysobacter oryzae (among four other species), it became clear that bacteria potentially antagonizing phytopathogens dominate in C. album seeds in soil. The role of these potential antagonists on weed and crop plant growth was discussed.  相似文献   

7.
The diversity of soil microbial communities can be key to the capacity of soils tosuppress soil-borne plant diseases. As agricultural practice, as well as directedagronomical measures, are known to be able to affect soil microbial diversity, it isplausible that the soil microflora can be geared towards a greater suppressivity ofsoil-borne diseases as a result of the selection of suitable soil management regimes.In the context of a programme aimed at investigating the microbial diversity of soilsunder different agricultural regimes, including permanent grassland versus arableland under agricultural rotation, we assessed how soil microbial diversity is affectedin relation to the suppression of the soil-borne potato pathogen Rhizoctoniasolani AG3. The diversity in the microbial communities over about a growingseason was described by using cultivation-based – plating on different media – and cultivation-independent – soil DNA-based PCR followed by denaturing gradient gel electrophoresis (DGGE) community fingerprinting – methods. The results showed great diversity in the soil microbiota at both the culturable and cultivation-independent detection levels. Using cultivation methods, various differences between treatments with respect to sizes of bacterial and fungal populations were detected, with highest population sizes generally found in rhizospheres. In addition, the evenness of eco-physiologically differing bacterial types was higher in grassland than in arable land under rotation. At the cultivation-independent level, clear differences in the diversities of several microbial groups between permanent grassland and arable land under rotation were apparent. Bio-assays that assessed the growth of R. solani AG3 hyphae through soil indicated a greater growth suppression in grassland than in arable land soils. Similarly, an experiment performed in the glasshouse showed clear differences in both microbial diversities and suppressiveness of R. solani growth in soil, depending on the presence of either maizeor oats as the crop. The significance of these findings for designing soil managementstrategies is discussed.  相似文献   

8.
Background

Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes.

Results

According to the ion content, the lakes were classified either as chloride or chloride-sulfate types. Water salinity ranges from 4.3 to 290 g L−1. Many diverse microbial communities were found. Filamentous and colonial Cyanobacteria of the genera Scytonema, Aphanocapsa, and/or filamentous Algae dominated in littoral communities. Spatial and temporal organization of planktonic microbial communities and the quantities of Archaea and Bacteria were investigated using fluorescent in situ hybridization. We have found that the dominant planktonic component is represented by Archaea, or, less frequently, by Bacteria. Various phylogenetic groups (Bacteria, Archaea, Algae, and Cyanobacteria) are nonuniformly distributed. The principal component analysis was used to detect environmental factors that affect microorganism abundance. We found the principal components responsible for 71.1 % of the observed variation. It was demonstrated that two-block partial least squares was a better method than principal component analysis for analysis of the data. We observed general relationships between microbial abundance and water salinity.

Conclusions

We have performed the first-ever study of the structure of the microbial communities of eleven saline lakes in the Novosibirsk region along with their physical-chemical parameters of waters. Our study demonstrates that saline lakes in the Novosibirsk region contain a unique microbial communities that may become a prolific source of microorganisms for fundamental and applied studies in various fields of ecology, microbiology, geochemistry, and biotechnology, and deserve further metagenomic investigation.

  相似文献   

9.
Reef-building corals may be seen as holobiont organisms, presenting diverse associated microbial communities. Best known is the symbiotic relationship with zooxanthellae, but Archaea, Bacteria, fungi, viruses, and algal plastids are also abundant. Until now, there is little information concerning microbial communities associated with Brazilian corals. The present study aims to describe the diversity of Archaea, Bacteria, and eukaryotic algal plastid communities associated with two sympatric species, Siderastrea stellata and Mussismilia hispida, from Southeastern Brazil, using 16S rRNA gene libraries. Since corals present a high number of other associated invertebrates, coral barcoding (COI) was performed to confirm the exclusive occurrence of coral DNA in our samples. Our analysis yielded 354 distinct microbial OTUs, represented mainly by novel phylotypes. Richness (Chao1 and ACE) and diversity (H') estimations of the microbial communities associated with both species were high and comparable to other studies. Rarefaction analyses showed that microbial diversity of S. stellata is higher than that of M. hispida. Libshuff comparative analyses showed that the highest microbial community similarity between the two coral species occurred in the bacterial libraries, while archaeal and plastidial communities were significantly different. Crenarchaeota dominated archaeal communities, while Proteobacteria was the most abundant bacterial phylum, dominated by alpha-Proteobacteria. Plastids were also represented by novel phylotypes and did not match with any 16S rRNA sequences of Cyanobacteria and zooxanthellae from GenBank. Our data improves the pool of available information on Brazilian coral microbes and shows corals as sources of diverse prokaryotic and picoeukaryotic communities.  相似文献   

10.
The community structure of bacterioplankton in meromictic Lake Saelenvannet was examined by PCR amplification of the V3 region of 16S rRNA from microbial communities recovered from various depths in the water column. Two different primer sets were used, one for amplification of DNA from the domain Bacteria and another specific for DNA from the domain Archaea. Amplified DNA fragments were resolved by denaturing gradient gel electrophoresis (DGGE), and the resulting profiles were reproducible and specific for the communities from different depths. Bacterial diversity estimated from the number and intensity of specific fragments in DGGE profiles decreased with depth. The reverse was true for the Archaea, with the diversity increasing with depth. Hybridization of DGGE profiles with oligonucleotide probes specific for phylogenetic groups of microorganisms showed the presence of both sulfate-reducing bacteria and methanogens throughout the water column, but they appeared to be most abundant below the chemocline. Several dominant fragments in the DGGE profiles were excised and sequenced. Among the dominant populations were representatives related to Chlorobium phaeovibrioides, chloroplasts from eukaryotic algae, and unidentified Archaea.  相似文献   

11.
The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S0) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration.  相似文献   

12.
Microbial Community Succession in an Unvegetated,Recently Deglaciated Soil   总被引:3,自引:0,他引:3  
Primary succession is a fundamental process in macroecosystems; however, if and how soil development influences microbial community structure is poorly understood. Thus, we investigated changes in the bacterial community along a chronosequence of three unvegetated, early successional soils (∼20-year age gradient) from a receding glacier in southeastern Peru using molecular phylogenetic techniques. We found that evenness, phylogenetic diversity, and the number of phylotypes were lowest in the youngest soils, increased in the intermediate aged soils, and plateaued in the oldest soils. This increase in diversity was commensurate with an increase in the number of sequences related to common soil bacteria in the older soils, including members of the divisions Acidobacteria, Bacteroidetes, and Verrucomicrobia. Sequences related to the Comamonadaceae clade of the Betaproteobacteria were dominant in the youngest soil, decreased in abundance in the intermediate age soil, and were not detected in the oldest soil. These sequences are closely related to culturable heterotrophs from rock and ice environments, suggesting that they originated from organisms living within or below the glacier. Sequences related to a variety of nitrogen (N)-fixing clades within the Cyanobacteria were abundant along the chronosequence, comprising 6–40% of phylotypes along the age gradient. Although there was no obvious change in the overall abundance of cyanobacterial sequences along the chronosequence, there was a dramatic shift in the abundance of specific cyanobacterial phylotypes, with the intermediate aged soils containing the greatest diversity of these sequences. Most soil biogeochemical characteristics showed little change along this ∼20-year soil age gradient; however, soil N pools significantly increased with soil age, perhaps as a result of the activity of the N-fixing Cyanobacteria. Our results suggest that, like macrobial communities, soil microbial communities are structured by substrate age, and that they, too, undergo predictable changes through time.  相似文献   

13.
14.
In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65 degrees C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50 degrees C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50 degrees C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them.  相似文献   

15.
Two Pythium-infested soils were used to compare the wheat root and rhizosphere soil microbial communities from plants grown in the field or in greenhouse trials and their stability in the presence of biocontrol agents. Bacteria showed the highest diversity at early stages of wheat growth in both field and greenhouse trials, while fungal diversity increased later on, at 12 weeks of the crop cycle. The microbial communities were stable in roots and rhizosphere samples across both soil types used in this study. Such stability was also observed irrespective of the cultivation system (field or greenhouse) or addition of biocontrol coatings to wheat seeds to control Pythium disease (in this study soil infected with Pythium sp. clade F was tested). In greenhouse plant roots, Archaeorhizomyces, Debaryomyces, Delftia, and unclassified Pseudeurotiaceae were significantly reduced when compared to plant roots obtained from the field trials. Some operational taxonomic units (OTUs) represented genetic determinants clearly transmitted vertically by seed endophytes (specific OTUs were found in plant roots) and the plant microbiota was enriched over time by OTUs from the rhizosphere soil. This study provided key information regarding the microbial communities associated with wheat roots and rhizosphere soils at different stages of plant growth and the role that Paenibacillus and Streptomyces strains play as biocontrol agents in supporting plant growth in infested soils.  相似文献   

16.
Land use type is key factor in restoring the degraded soils due to its impact on soil chemical properties and microbial community. In this study, the influences of land use type on arbuscular mycorrhizal fungal (AMF) community and soil chemical properties were assessed in a long-run experimental station in subtropical hilly area of southern China. Soil samples were collected from forest land, orchard and vegetable field. Soil chemical properties were analyzed, and PCR-DGGE was performed to explore the AMF community structure. Cloning and sequencing of DGGE bands were conducted to monitor AMF community composition. Results indicate that the contents of total P, available P and available K were the highest while the contents of soil organic matter, total N, total K and available N were the lowest in vegetable field soils, with forest land soils vice versa. According to DGGE profiling, AMF community in forest soils was more closely related to that in orchard soils than that in vegetable field soils. Sequencing indicated that 45 out of 53 excised bands were AMF and 64.4% of AMF belonged to Glomeraceae, including some “generalists” present in all soils and some “specialists” present only in soils of particular land use. Category principle component analysis demonstrated that total N, soil organic matter and available P were the most important factors affecting AMF community, and some AMF phylotypes were closely associated with particular soil chemical properties. Our data suggest that AMF communities are different with different land use types.  相似文献   

17.
The microbial communities in solar salterns and a soda lake have been characterized using two techniques: BIOLOG, to estimate the metabolic potential, and amplicon length heterogeneity analysis, to estimate the molecular diversity of these communities. Both techniques demonstrated that the halophilic Bacteria and halophilic Archaea populations in the Eilat, Israel saltern are dynamic communities with extensive metabolic potentials and changing community structures. Halophilic Bacteria were detected in Mono Lake and the lower salinity ponds at the Shark Bay saltern in Western Australia, except when the crystallizer samples were stressed by exposure to Acid Green Dye #9899. At Shark Bay, halophilic Archaea were found only in the crystallizer samples. These data confirm both the metabolic diversity and the phylogenetic complexity of the microbial communities and assert the need to develop more versatile media for the cultivation of the diversity of bacteria in hypersaline environments. Journal of Industrial Microbiology & Biotechnology (2002) 28, 48–55 DOI: 10.1038/sj/jim/7000175 Received 20 May 2001/ Accepted in revised form 15 June 2001  相似文献   

18.
Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds. Three-letter abbreviations for names of genera of Halobacteriaceae conform the recommendations of the ICSP Subcommittee on the Taxonomy of Halobacteriaceae.  相似文献   

19.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

20.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of CODsoluble/ CODtotal were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated withMethanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together withM. concilii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号