首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   5篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
The human ether-á-go-go–related gene (hERG) K+ channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q1 and Q2, with V1/2’s of −55.7 (equivalent charge, z = 1.60) and −54.2 mV (z = 1.30), respectively, with the Q2 charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q1 and Q2, decreasing to 4.3 ms for Q2 at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V1/2 of −64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q1 and Q2 charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.  相似文献   
2.
The effect of two strains of lactic acid bacteria (LAB) (Lactococcus lactis and Carnobacterium piscicola) on the proteolytic activity of four strains of Psychrotrophic Gram-negative bacteria [Psy G(?)] (Pseudomonas fluorescens, Aeromonas hydrophila, Pseudomonas putida and Photobacterium damselae) has been determined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), in fresh vacuum-packed farmed sea bass (Dicentrarchus labrax) fillets artificially contaminated, during 21 days of chilled storage. The profiles of sarcoplasmic (SP) and myofibrillar (MP) proteins indicated that the major changes were produced with Pseudomonas fluorescens, Aeromonas hydrophila, and Pseudomonas putida starters. The results also showed that LAB strains presented a weak proteolytic activity against MP and SP proteins in muscle of fresh sea bass. In fact, we noted the less pronounced degradation of protein fractions in samples inoculated with LAB combination. Moreover, a significant bacteriostatic effect of LAB strains was demonstrated against all microflora, particularly mesophilic aerobic plate counts (MAPC) and psychrotrophic bacterial counts (PBC), with fillets remaining unspoiled until the end of storage, against values of 7 and 8 log CFU/g, respectively; control fish fillets exceeded the upper acceptability limit.  相似文献   
3.
Morpho-physiological and biochemical responses of Arabidopsis thaliana (accession N1438) to bicarbonate-induced iron deficiency were investigated. Plants were grown in cabinet under controlled conditions, in a nutrient solution containing 5 μM Fe, added or not with 10 mM NaHCO3. After 30 days, bicarbonate-treated plants displayed significantly lower biomass, leaf number and leaf surface area as compared to control plants, and slight yellowing of their younger leaves was observed. Potassium (K+) content was not modified by bicarbonate treatment in roots, whereas it was significantly diminished in shoots. Their content in ferrous iron (Fe2+) and in leaf total chlorophylls was noticeably lower than in control plants. Root Fe(III)-chelate reductase and phosphoenolpyruvate carboxylase (PEPC) activities were significantly enhanced, but leaf ribulose 1.5-bisphosphate carboxylase (Rubisco) activity was decreased.  相似文献   
4.
The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG+) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs+, displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K+, suggesting that K+ ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG+ ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K+, allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics.  相似文献   
5.
In the present study the atomic force microscope (AFM) was used to image the surface morphology of red blood cells (RBC) for the first time. The AFM yielded very reproducible images without appreciable modifications of the sample surfaces. In addition to this topographical imaging, we have developed an experimental approach to measure the binding strength between antibody (anti-A), and the RBC antigen A, when reversible bonds between specific molecules such as antigen and antibody mediate the adhesion. The experimental results suggest that the procedure established here may be used for specific antibody detection. This study has also enhanced our understanding under physiological conditions of molecular interaction in particular antigen-antibody.  相似文献   
6.
Background: The present study examined the contribution of ethnicity to the association of leptin receptor gene (LEPR) gene variants with polycystic ovary syndrome (PCOS) in Tunisian and Bahraini Arabic-speaking women.Methods: Subjects consisted of 320 women with PCOS, and 446 eumenorrhic women from Tunisia, and 242 women with PCOS and 238 controls from Bahrain. Genotyping of (exonic) rs1137100 and rs1137101 and (intronic) rs2025804 LEPR variants was done by allelic exclusion.Results: The minor allele frequencies (MAFs) of rs1137100 and rs1137101 were significantly different between PCOS cases and control women from Bahrain but not Tunisia, and LEPR rs1137101 was associated with increased PCOS susceptibility only in Bahraini subjects. Furthermore, rs1137100 was associated with decreased PCOS risk among Bahrainis under codominant and recessive models; rs1137100 was negatively associated with PCOS in Tunisians after controlling for testosterone. In addition, rs2025804 was associated with increased PCOS risk among Tunisian but not Bahraini women, after adjusting for key covariates. Negative correlation was seen between rs1137101 and triglycerides in Tunisians, while homeostasis model assessment of insulin resistance (HOMA-IR) and insulin correlated with rs2025804 and rs1137101 among Bahraini subjects, and rs1137101 correlated with estradiol and prolactin. Taking TAG haplotype as common, positive association of TAA and negative association of TGG haplotype with PCOS was seen among Bahraini women; no three-locus PCOS-associated haplotypes were found in Tunisians.Conclusions: The present study is the first to demonstrate the contribution of ethnicity to the association of LEPR gene variants with PCOS, thereby highlighting the significance of controlling for ethnicity in gene association investigations.  相似文献   
7.
8.
Phosphatidylinositol (4,5)-bisphosphate (PIP2) is a phospholipid of the plasma membrane that has been shown to be a key regulator of several ion channels. Functional studies and more recently structural studies of Kir channels have revealed the major impact of PIP2 on the open state stabilization. A similar effect of PIP2 on the delayed rectifiers Kv7.1 and Kv11.1, two voltage-gated K+ channels, has been suggested, but the molecular mechanism remains elusive and nothing is known on PIP2 effect on other Kv such as those of the Shaker family. By combining giant-patch ionic and gating current recordings in COS-7 cells, and voltage-clamp fluorimetry in Xenopus oocytes, both heterologously expressing the voltage-dependent Shaker channel, we show that PIP2 exerts 1) a gain-of-function effect on the maximal current amplitude, consistent with a stabilization of the open state and 2) a loss-of-function effect by positive-shifting the activation voltage dependence, most likely through a direct effect on the voltage sensor movement, as illustrated by molecular dynamics simulations.  相似文献   
9.
The applications of Raman microspectroscopy have been extended in recent years into the field of clinical medicine, and specifically in cancer research, as a non‐invasive diagnostic method in vivo and ex vivo, and the field of pharmaceutical development as a label‐free predictive technique for new drug mechanisms of action in vitro. To further illustrate its potential for such applications, it is important to establish its capability to fingerprint drug mechanisms of action and different cellular reactions. In this study, cytotoxicity assays were employed to establish the toxicity profiles for 48 and 72 hours exposure of lung cancer cell lines, A549 and Calu‐1, after exposure to Actinomycin D (ACT) and Raman micro‐spectroscopy was used to track its mechanism of action at subcellular level and subsequent cellular responses. Multivariate data analysis was used to elucidate the spectroscopic signatures associated with ACT chemical binding and cellular resistances. Results show that the ACT uptake and mechanism of action are similar in the 2 cell lines, while A549 cells exhibits spectral signatures of resistance to apoptosis related to its higher chemoresistance to the anticancer drug ACT. The observations are discussed in comparison to previous studies of the similar anthracyclic chemotherapeutic agent Doxorubicin. A, Preprocessed Raman spectrum of ACT stock solution dissolved in sterile water and mean spectrum with SD of (B) nucleolus, (C) nucleus and (D) cytoplasm of A549 cell lines after 48 hours exposure to the corresponding IC50.   相似文献   
10.
This overview groups some of the recent studies highlighting the potential application of Raman microspectroscopy as an analytical technique in preclinical development to predict drug mechanism of action and in clinical application as a companion diagnostic and in personalised therapy due to its capacity to predict cellular resistance and therefore to optimise chemotherapeutic treatment efficacy. Notably, the anthracyclines, doxorubicin and actinomycin D, elicit similar spectroscopic signatures of subcellular interaction characteristic of the mode of action of intercalation. Although cisplatin and vincristine show markedly different signatures, at low exposure doses, their signatures at higher doses show marked similarities to those elicited by the intercalating anthracyclines, confirming that anticancer agents can have different modes of action with different spectroscopic signatures, depending on the dose. The study demonstrates that Raman microspectroscopy can elucidate subcellular transport and accumulation pathways of chemotherapeutic agents, characterise and fingerprint their mode of action, and potentially identify cell‐resistant strains. The consistency of the spectroscopic signatures for drugs of similar modes of action, in different cell lines, suggests that this fingerprint can be considered a “spectralome” of the drug‐cell interaction suggesting a new paradigm of representing spectroscopic responses.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号