首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alignment of RNA base pairing probability matrices   总被引:6,自引:0,他引:6  
MOTIVATION: Many classes of functional RNA molecules are characterized by highly conserved secondary structures but little detectable sequence similarity. Reliable multiple alignments can therefore be constructed only when the shared structural features are taken into account. Since multiple alignments are used as input for many subsequent methods of data analysis, structure-based alignments are an indispensable necessity in RNA bioinformatics. RESULTS: We present here a method to compute pairwise and progressive multiple alignments from the direct comparison of base pairing probability matrices. Instead of attempting to solve the folding and the alignment problem simultaneously as in the classical Sankoff's algorithm, we use McCaskill's approach to compute base pairing probability matrices which effectively incorporate the information on the energetics of each sequences. A novel, simplified variant of Sankoff's algorithms can then be employed to extract the maximum-weight common secondary structure and an associated alignment. AVAILABILITY: The programs pmcomp and pmmulti described in this contribution are implemented in Perl and can be downloaded together with the example datasets from http://www.tbi.univie.ac.at/RNA/PMcomp/. A web server is available at http://rna.tbi.univie.ac.at/cgi-bin/pmcgi.pl  相似文献   

2.
Fang X  Luo Z  Yuan B  Wang J 《Bioinformation》2007,2(5):222-229
The prediction of RNA secondary structure can be facilitated by incorporating with comparative analysis of homologous sequences. However, most of existing comparative methods are vulnerable to alignment errors and thus are of low accuracy in practical application. Here we improve the prediction of RNA secondary structure by detecting and assessing conserved stems shared by all sequences in the alignment. Our method can be summarized by: 1) we detect possible stems in single RNA sequence using the so-called position matrix with which some possibly paired positions can be uncovered; 2) we detect conserved stems across multiple RNA sequences by multiplying the position matrices; 3) we assess the conserved stems using the Signal-to-Noise; 4) we compute the optimized secondary structure by incorporating the so-called reliable conserved stems with predictions by RNAalifold program. We tested our method on data sets of RNA alignments with known secondary structures. The accuracy, measured as sensitivity and specificity, of our method is greater than predictions by RNAalifold.  相似文献   

3.
MOTIVATION: Structural RNA genes exhibit unique evolutionary patterns that are designed to conserve their secondary structures; these patterns should be taken into account while constructing accurate multiple alignments of RNA genes. The Sankoff algorithm is a natural alignment algorithm that includes the effect of base-pair covariation in the alignment model. However, the extremely high computational cost of the Sankoff algorithm precludes its application to most RNA sequences. RESULTS: We propose an efficient algorithm for the multiple alignment of structural RNA sequences. Our algorithm is a variant of the Sankoff algorithm, and it uses an efficient scoring system that reduces the time and space requirements considerably without compromising on the alignment quality. First, our algorithm computes the match probability matrix that measures the alignability of each position pair between sequences as well as the base pairing probability matrix for each sequence. These probabilities are then combined to score the alignment using the Sankoff algorithm. By itself, our algorithm does not predict the consensus secondary structure of the alignment but uses external programs for the prediction. We demonstrate that both the alignment quality and the accuracy of the consensus secondary structure prediction from our alignment are the highest among the other programs examined. We also demonstrate that our algorithm can align relatively long RNA sequences such as the eukaryotic-type signal recognition particle RNA that is approximately 300 nt in length; multiple alignment of such sequences has not been possible by using other Sankoff-based algorithms. The algorithm is implemented in the software named 'Murlet'. AVAILABILITY: The C++ source code of the Murlet software and the test dataset used in this study are available at http://www.ncrna.org/papers/Murlet/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.

Background

The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented.

Results

TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a significance threshold are shown to be more accurate for TurboFold than for alternative methods that estimate base pairing probabilities. TurboFold-MEA, which uses base pairing probabilities from TurboFold in a maximum expected accuracy algorithm for secondary structure prediction, has accuracy comparable to the best performing secondary structure prediction methods. The computational and memory requirements for TurboFold are modest and, in terms of sequence length and number of sequences, scale much more favorably than joint alignment and folding algorithms.

Conclusions

TurboFold is an iterative probabilistic method for predicting secondary structures for multiple RNA sequences that efficiently and accurately combines the information from the comparative analysis between sequences with the thermodynamic folding model. Unlike most other multi-sequence structure prediction methods, TurboFold does not enforce strict commonality of structures and is therefore useful for predicting structures for homologous sequences that have diverged significantly. TurboFold can be downloaded as part of the RNAstructure package at http://rna.urmc.rochester.edu.  相似文献   

5.
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu.  相似文献   

6.
Recently published alignments of available 5 S rRNA sequences have shown that a rigid base pairing pattern, pointing to the existence of a universal five-helix secondary structure for all 5 S RNAs, can be superimposed on such alignments. For a few species, the alignment and the base pairing pattern show distortions with respect to the large majority of sequences. Their 5 S RNAs may form exceptional secondary structures, or there may just be errors in the published sequences. We have examined such a case, Pseudomonas fluorescens, and found the sequence to be in error. The corrected sequence, as well as those of the related species Azotobacter vinelandii and Pseudomonas aeruginosa, fit perfectly in the 5 S RNA sequence alignment and in the five-helix secondary structure model. There exists comparative evidence for the frequent presence of non-standard base pairs at several points of the 5 S RNA secondary structure.  相似文献   

7.
MOTIVATION: Non-coding RNA genes and RNA structural regulatory motifs play important roles in gene regulation and other cellular functions. They are often characterized by specific secondary structures that are critical to their functions and are often conserved in phylogenetically or functionally related sequences. Predicting common RNA secondary structures in multiple unaligned sequences remains a challenge in bioinformatics research. Methods and RESULTS: We present a new sampling based algorithm to predict common RNA secondary structures in multiple unaligned sequences. Our algorithm finds the common structure between two sequences by probabilistically sampling aligned stems based on stem conservation calculated from intrasequence base pairing probabilities and intersequence base alignment probabilities. It iteratively updates these probabilities based on sampled structures and subsequently recalculates stem conservation using the updated probabilities. The iterative process terminates upon convergence of the sampled structures. We extend the algorithm to multiple sequences by a consistency-based method, which iteratively incorporates and reinforces consistent structure information from pairwise comparisons into consensus structures. The algorithm has no limitation on predicting pseudoknots. In extensive testing on real sequence data, our algorithm outperformed other leading RNA structure prediction methods in both sensitivity and specificity with a reasonably fast speed. It also generated better structural alignments than other programs in sequences of a wide range of identities, which more accurately represent the RNA secondary structure conservations. AVAILABILITY: The algorithm is implemented in a C program, RNA Sampler, which is available at http://ural.wustl.edu/software.html  相似文献   

8.
MOTIVATION: The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but also their potential secondary structures. Sankoff's algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. RESULTS: We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable with the much slower existing algorithms. AVAILABILITY: The web server of SCARNA with graphical structural alignment viewer is available at http://www.scarna.org/.  相似文献   

9.
MOTIVATION: Base pairing probability matrices have been frequently used for the analyses of structural RNA sequences. Recently, there has been a growing need for computing these probabilities for long DNA sequences by constraining the maximal span of base pairs to a limited value. However, none of the existing programs can exactly compute the base pairing probabilities associated with the energy model of secondary structures under such a constraint. RESULTS: We present an algorithm that exactly computes the base pairing probabilities associated with the energy model under the constraint on the maximal span W of base pairs. The complexity of our algorithm is given by O(NW2) in time and O(N+W2) in memory, where N is the sequence length. We show that our algorithm has a higher sensitivity to the true base pairs as compared to that of RNAplfold. We also present an algorithm that predicts a mutually consistent set of local secondary structures by maximizing the expected accuracy function. The comparison of the local secondary structure predictions with those of RNALfold indicates that our algorithm is more accurate. Our algorithms are implemented in the software named 'Rfold.' AVAILABILITY: The C++ source code of the Rfold software and the test dataset used in this study are available at http://www.ncrna.org/software/Rfold/.  相似文献   

10.
Computational methods for determining the secondary structure of RNA sequences from given alignments are currently either based on thermodynamic folding, compensatory base pair substitutions or both. However, there is currently no approach that combines both sources of information in a single optimization problem. Here, we present a model that formally integrates both the energy-based and evolution-based approaches to predict the folding of multiple aligned RNA sequences. We have implemented an extended version of Pfold that identifies base pairs that have high probabilities of being conserved and of being energetically favorable. The consensus structure is predicted using a maximum expected accuracy scoring scheme to smoothen the effect of incorrectly predicted base pairs. Parameter tuning revealed that the probability of base pairing has a higher impact on the RNA structure prediction than the corresponding probability of being single stranded. Furthermore, we found that structurally conserved RNA motifs are mostly supported by folding energies. Other problems (e.g. RNA-folding kinetics) may also benefit from employing the principles of the model we introduce. Our implementation, PETfold, was tested on a set of 46 well-curated Rfam families and its performance compared favorably to that of Pfold and RNAalifold.  相似文献   

11.
MOTIVATION: Alignment of RNA has a wide range of applications, for example in phylogeny inference, consensus structure prediction and homology searches. Yet aligning structural or non-coding RNAs (ncRNAs) correctly is notoriously difficult as these RNA sequences may evolve by compensatory mutations, which maintain base pairing but destroy sequence homology. Ideally, alignment programs would take RNA structure into account. The Sankoff algorithm for the simultaneous solution of RNA structure prediction and RNA sequence alignment was proposed 20 years ago but suffers from its exponential complexity. A number of programs implement lightweight versions of the Sankoff algorithm by restricting its application to a limited type of structure and/or only pairwise alignment. Thus, despite recent advances, the proper alignment of multiple structural RNA sequences remains a problem. RESULTS: Here we present StrAl, a heuristic method for alignment of ncRNA that reduces sequence-structure alignment to a two-dimensional problem similar to standard multiple sequence alignment. The scoring function takes into account sequence similarity as well as up- and downstream pairing probability. To test the robustness of the algorithm and the performance of the program, we scored alignments produced by StrAl against a large set of published reference alignments. The quality of alignments predicted by StrAl is far better than that obtained by standard sequence alignment programs, especially when sequence homologies drop below approximately 65%; nevertheless StrAl's runtime is comparable to that of ClustalW.  相似文献   

12.
13.
All popular algorithms of pair-wise alignment of protein primary structures (e.g. Smith-Waterman (SW), FASTA, BLAST, et al.) utilize only amino acid sequences. The SW-algorithm is the most accurate among them, i.e. it produces alignments that are most similar to the alignments obtained by superposition of protein 3D-structures. But even the SW-algorithm is unable to restore the 3D-based alignment if similarity of amino acid sequences (%id) is below 30%. We have proposed a novel alignment method that explicitly takes into account the secondary structure of the compared proteins. We have shown that it creates significantly more accurate alignments compared to SW-algorithm. In particular, for sequences with %id < 30% the average accuracy of the new method is 58% compared to 35% for SW-algorithm (the accuracy of an algorithmic sequence alignment is the part of restored position of a "golden standard" alignment obtained by superposition of corresponding 3D-structures). The accuracy of the proposed method is approximately identical both for experimental, and for theoretically predicted secondary structures. Thus the method can be applied for alignment of protein sequences even if protein 3D-structure is unknown. The program is available at ftp://194.149.64.196/STRUSWER/.  相似文献   

14.
BACKGROUND: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure is often conserved in evolution, the well known, but underused, mutual information measure for identifying covarying sites in an alignment can be useful for identifying structural elements. This article presents MIfold, a MATLAB toolbox that employs mutual information, or a related covariation measure, to display and predict conserved RNA secondary structure (including pseudoknots) from an alignment. RESULTS: We show that MIfold can be used to predict simple pseudoknots, and that the performance can be adjusted to make it either more sensitive or more selective. We also demonstrate that the overall performance of MIfold improves with the number of aligned sequences for certain types of RNA sequences. In addition, we show that, for these sequences, MIfold is more sensitive but less selective than the related RNAalifold structure prediction program and is comparable with the COVE structure prediction package. CONCLUSION: MIfold provides a useful supplementary tool to programs such as RNA Structure Logo, RNAalifold and COVE, and should be useful for automatically generating structural predictions for databases such as Rfam.  相似文献   

15.
Automated RNA alignment algorithms often fail to recapture the essential conserved sites that are critical for function. To assist in the refinement of these algorithms, we manually curated a set of 148 alignments with a total of 9600 unique sequences, in which each alignment was backed by at least one crystal or NMR structure. These alignments included both naturally and artificially selected molecules. We used principles of isostericity to improve the alignments from an average of 83%-94% isosteric base pairs. We expect that this alignment collection will assist in a wide range of benchmarking efforts and provide new insight into evolutionary principles governing change in RNA structural motifs. The improved alignments have been contributed to the Rfam database.  相似文献   

16.
R Lück  S Grf    G Steger 《Nucleic acids research》1999,27(21):4208-4217
A tool for prediction of conserved secondary structure of a set of homologous single-stranded RNAs is presented. For each RNA of the set the structure distribution is calculated and stored in a base pair probability matrix. Gaps, resulting from a multiple sequence alignment of the RNA set, are introduced into the individual probability matrices. These 'aligned' probability matrices are summed up to give a consensus probability matrix emphasizing the conserved structural elements of the RNA set. Because the multiple sequence alignment is independent of any structural constraints, such an alignment may result in introduction of gaps into the homologous probability matrices that disrupt a common consensus structure. By use of its graphical user interface the presented tool allows the removal of such misalignments, which are easily recognized, from the individual probability matrices by optimizing the sequence alignment with respect to a structural alignment. From the consensus probability matrix a consensus structure is extracted, which is viewable in three different graphical representations. The functionality of the tool is demonstrated using a small set of U7 RNAs, which are involved in 3'-end processing of histone mRNA precursors. Supplementary Material lists further results obtained. Advantages and drawbacks of the tool are discussed in comparison to several other algorithms.  相似文献   

17.
18.
MOTIVATION: Computationally identifying non-coding RNA regions on the genome has much scope for investigation and is essentially harder than gene-finding problems for protein-coding regions. Since comparative sequence analysis is effective for non-coding RNA detection, efficient computational methods are expected for structural alignments of RNA sequences. On the other hand, Hidden Markov Models (HMMs) have played important roles for modeling and analysing biological sequences. Especially, the concept of Pair HMMs (PHMMs) have been examined extensively as mathematical models for alignments and gene finding. RESULTS: We propose the pair HMMs on tree structures (PHMMTSs), which is an extension of PHMMs defined on alignments of trees and provides a unifying framework and an automata-theoretic model for alignments of trees, structural alignments and pair stochastic context-free grammars. By structural alignment, we mean a pairwise alignment to align an unfolded RNA sequence into an RNA sequence of known secondary structure. First, we extend the notion of PHMMs defined on alignments of 'linear' sequences to pair stochastic tree automata, called PHMMTSs, defined on alignments of 'trees'. The PHMMTSs provide various types of alignments of trees such as affine-gap alignments of trees and an automata-theoretic model for alignment of trees. Second, based on the observation that a secondary structure of RNA can be represented by a tree, we apply PHMMTSs to the problem of structural alignments of RNAs. We modify PHMMTSs so that it takes as input a pair of a 'linear' sequence and a 'tree' representing a secondary structure of RNA to produce a structural alignment. Further, the PHMMTSs with input of a pair of two linear sequences is mathematically equal to the pair stochastic context-free grammars. We demonstrate some computational experiments to show the effectiveness of our method for structural alignments, and discuss a complexity issue of PHMMTSs.  相似文献   

19.
As one of the earliest problems in computational biology, RNA secondary structure prediction (sometimes referred to as "RNA folding") problem has attracted attention again, thanks to the recent discoveries of many novel non-coding RNA molecules. The two common approaches to this problem are de novo prediction of RNA secondary structure based on energy minimization and the consensus folding approach (computing the common secondary structure for a set of unaligned RNA sequences). Consensus folding algorithms work well when the correct seed alignment is part of the input to the problem. However, seed alignment itself is a challenging problem for diverged RNA families. In this paper, we propose a novel framework to predict the common secondary structure for unaligned RNA sequences. By matching putative stacks in RNA sequences, we make use of both primary sequence information and thermodynamic stability for prediction at the same time. We show that our method can predict the correct common RNA secondary structures even when we are given only a limited number of unaligned RNA sequences, and it outperforms current algorithms in sensitivity and accuracy.  相似文献   

20.
张帆  张兵  向华  胡松年 《微生物学报》2009,49(11):1445-1453
摘要:【目的】利用生物信息学方法了解目前拥有全基因组序列的极端嗜盐古菌中CRISPR结构的特征。【方法】通过比对,保守性分析,GC含量分析,RNA结构预测等方法对已有全基因组序列的嗜盐古菌基因组进行研究。【结果】在5株嗜盐古菌基因组中发现CRISPR结构,在leader序列内得到具有回文性质的保守motif。发现在大CRISPR结构内repeat序列具有很强的保守性。同时根据第四位碱基的不同,repeat序列可形成两类不同的RNA二级结构。【结论】leader序列中回文结构的发现对其可能为蛋白结合位点的假  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号