首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
During spring-summer 2003-2004, the avian community was surveyed for hemosporidian parasites in an oak (Quercus spp.) and madrone (Arbutus spp.) woodland bordering grassland and chaparral habitats at a site in northern California, a geographic location and in habitat types not previously sampled for these parasites. Of 324 birds from 46 species (21 families) sampled (including four species not previously examined for hemosporidians), 126 (39%) were infected with parasites identified as species of one or more of the genera Plasmodium (3% of birds sampled), Haemoproteus (30%), and Leucocytozoon (11%). Species of parasite were identified by morphology in stained blood smears and were consistent with one species of Plasmodium, 11 species of Haemoproteus, and four species of Leucocytozoon. We document the presence of one of the parasite genera in seven new host species and discovered 12 new parasite species-host species associations. Hatching-year birds were found infected with parasites of all three genera. Prevalence of parasites for each genus differed significantly for the entire sample, and prevalence of parasites for the most common genus, Haemoproteus, differed significantly among bird families. Among families with substantial sample sizes, the Vireonidae (63%) and Emberizidae (70%) were most often infected with Haemoproteus spp. No evidence for parasite between-genus interaction, either positive or negative, was found. Overall prevalence of hemosporidians at the northern California sites and predominance of Haemoproteus spp. was similar to that reported in most other surveys for the USA, Canada, and the Caribbean islands.  相似文献   

2.
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.  相似文献   

3.
Many bird species host several lineages of apicomplexan blood parasites (Protista spp., Haemosporida spp.), some of which are shared across different host species. To understand such complex systems, it is essential to consider the fact that different lineages, species, and families of parasites can occur in the same population, as well as in the same individual bird, and that these parasites may compete or interact with each other. In this study, we present a new polymerase chain reaction (PCR) protocol that, for the first time, enables simultaneous typing of species from the 3 most common avian blood parasite genera (Haemoproteus, Plasmodium, and Leucocytozoon). By combining the high detection rate of a nested PCR with another PCR step to separate species of Plasmodium and Haemoproteus from Leucocytozoon, this procedure provides an easy, rapid, and accurate method to separate and investigate these parasites within a blood sample. We have applied this method to bird species with known infections of Leucocytozoon spp., Plasmodium spp., and Haemoproteus spp. To obtain a higher number of parasite lineages and to test the repeatability of the method, we also applied it to blood samples from bluethroats (Luscinia svecica), for which we had no prior knowledge regarding the blood parasite infections. Although only a small number of different bird species were investigated (6 passerine species), we found 22 different parasite species lineages (4 Haemoproteus, 8 Plasmodium, and 10 Leucocytozoon).  相似文献   

4.
We examined the prevalence and host fidelity of avian haemosporidian parasites belonging to the genera Haemoproteus, Leucocytozoon and Plasmodium in the central Philippine islands by sampling 23 bird families (42 species). Using species-specific PCR assays of the mitochondrial cytochrome b gene (471base pairs, bp), we detected infections in 91 of the 215 screened individuals (42%). We also discriminated between single and multiple infections. Thirty-one infected individuals harbored a single Haemoproteus lineage (14%), 18 a single Leucocytozoon lineage (8%) and 12 a single Plasmodium lineage (6%). Of the 215 screened birds, 30 (14%) presented different types of multiple infections. Intrageneric mixed infections were generally more common (18 Haemoproteus/Haemoproteus, 3 Leucocytozoon/Leucocytozoon, and 1 Plasmodium/Plasmodium) than intergeneric mixed infections (7 Haemoproteus/Leucocytozoon and 1 Haemoproteus/Leucocytozoon/Plasmodium). We recovered 81 unique haemosporidian mitochondrial haplotypes. These clustered in three strongly supported monophyletic clades that correspond to the three haemosporidian genera. Related lineages of Haemoproteus and Leucocytozoon were more likely to derive from the same host family than predicted by chance; however, this was not the case for Plasmodium. These results indicate that switches between host families are more likely to occur in Plasmodium. We conclude that Haemoproteus has undergone a recent diversification across well-supported host-family specific clades, while Leucocytozoon shows a longer association with its host(s). This study supports previous evidence of a higher prevalence and stronger host-family specificity of Haemoproteus and Leucocytozoon compared to Plasmodium.  相似文献   

5.
We investigated the degree of geographical shifts of transmission areas of vector-borne avian blood parasites (Plasmodium, Haemoproteus and Leucocytozoon) over ecological and evolutionary timescales. Of 259 different parasite lineages obtained from 5886 screened birds sampled in Europe and Africa, only two lineages were confirmed to have current transmission in resident bird species in both geographical areas. We used a phylogenetic approach to show that parasites belonging to the genera Haemoproteus and Leucocytozoon rarely change transmission area and that these parasites are restricted to one resident bird fauna over a long evolutionary time span and are not freely spread between the continents with the help of migratory birds. Lineages of the genus Plasmodium seem more freely spread between the continents. We suggest that such a reduced transmission barrier of Plasmodium parasites is caused by their higher tendency to infect migratory bird species, which might facilitate shifting of transmission area. Although vector-borne parasites of these genera apparently can shift between a tropical and a temperate transmission area and these areas are linked with an immense amount of annual bird migration, our data suggest that novel introductions of these parasites into resident bird faunas are rather rare evolutionary events.  相似文献   

6.
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector-borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites ( Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon ) from these sites in two widespread species of African rainforest birds, the yellow-whiskered greenbul ( Andropadus latirostris , Pycnonotidae) and the olive sunbird ( Cyanomitra olivacea , Nectariniidae). Twenty-six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats ( Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea , as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.  相似文献   

7.
To test the hypothesis that migrants infected with blood parasites arrive on the northern coast of the Gulf of Mexico in poorer condition than uninfected birds, we examined 1705 migrant passerine birds representing 54 species of 11 families from 2 Gulf Coast sites for blood parasites. Three hundred and sixty (21.1%) were infected with 1 or more species of 4 genera of blood parasites. The prevalence of parasites was as follows: Haemoproteus spp. (11.7%), Plasmodium spp. (6.7%), Leucocytozoon spp. (1.3%), and Trypanosoma spp. (1.2%). Both prevalence and density of Haemoproteus spp. infection varied among species. We found no relationship of gender or age with the prevalence of Haemoproteus spp. infection or Plasmodium spp. infection, with the exception of the orchard oriole (Icterus spurius) for which older birds were more likely to be infected with Haemoproteus spp. than younger birds. We also found that scarlet tanagers and summer tanagers infected with species of Haemoproteus have lower fat scores than uninfected individuals and that rose-breasted grosbeaks and Baltimore orioles infected with Haemoproteus spp. have a smaller mean body mass than uninfected individuals. Blood parasites do seem to pose a physiological cost for Neotropical migrant passerines and may be important components of the ecology of these species.  相似文献   

8.
Inferences about the evolution of host-parasitic relationships are often made based on the prevalence of avian malaria, which is usually estimated in a large sample of birds using either microscopic or molecular screening of blood samples. However, different techniques often have variable accuracy; thus, screening methodology can raise issues about statistical bias if method sensitivity varies systematically across parasites or hosts. To examine this possibility, published information was collected on the prevalence of species in 4 genera of avian blood parasites ( Plasmodium, Haemoproteus, Leucocytozoon, and Trypanosoma) from various sources that used different tools. The data were tested to determine if the application of different methods provided different estimates for the same hosts. In these comparisons between the main methodologies, the PCR-based molecular methods were generally found to provide higher estimates for Plasmodium spp. prevalence than microscopic tools, while there was no significant tendency for such a trend in species of Haemoproteus and Leucocytozoon. When analyzing intraspecific variance of prevalence within molecular studies, some studies provided consistently higher estimates for Haemoproteus spp. prevalence than others, indicating that differences between studies can affect detected estimates. Within microscopic studies, surveys that examined more microscopic fields were more likely to report higher prevalence for Plasmodium spp. than those relying on fewer microscopic fields. Consequently, studies making comparisons across parasite genera and/or host species from different sources need to consider several types of bias originating from variation in method sensitivity.  相似文献   

9.
Blood films from 421 birds of 142 species, representing 29 avian families, from the environs of Cali, Colombia, were examined for blood parsites. Only 30 (7.1%) birds of 26 species harbored hematozoa. Species of Haemoproteus (3.1%) and microfilaria (2.3%) were the most commonly encountered blood parasites; species of Leucocytozoon, Plasmodium, Akiba and Lankesterella were found in a few birds. Mixed infections with more than one genus of blood parasite were rare; most infections encountered were of low intensity.  相似文献   

10.
When host species colonize new areas, the parasite assemblage infecting the hosts might change, with some parasite species being lost and others newly acquired. These changes would likely lead to novel selective forces on both host and its parasites. We investigated the avian blood parasites in the passerine bird community on the mid-Atlantic island of S?o Miguel, Azores, a bird community originating from continental Europe. The presence of haemosporidian blood parasites belonging to the genera Haemoproteus, Plasmodium, and Leucocytozoon was assessed using polymerase chain reaction. We found two Plasmodium lineages and two Leucocytozoon lineages in 11 bird species (84% of all breeding passerine species) on the island. These lineages were unevenly distributed across bird species. The Eurasian Blackbird (Turdus merula) was the key-host species (total parasite prevalence of 57%), harboring the main proportion of parasite infections. Except for Eurasian Blackbirds, all bird species had significantly lower prevalence and parasite diversity compared to their continental populations. We propose that in evolutionary novel bird communities, single species may act as key hosts by harboring the main part of the parasite fauna from which parasites "leak" into the other species. This would create very different host-parasite associations in areas recently colonized by hosts as compared to in their source populations.  相似文献   

11.
Blood smears from 259 birds of 12 species, representing four families of raptors, from New Jersey, Pennsylvania, Delaware, and Virginia were examined for blood parasites. Infected birds constituted 59.1% of the total. Birds were infected with one or more of the following genera of protozoa: Leucocytozoon (43.2%); Haemoproteus (21.6%); Plasmodium (1.2%); and Trypanosoma (1.2%). Blood culture of 142 raptors of 11 species for Trypanosoma revealed a prevalence of 41.5%. Plasmodium circumflexum is reported for the first time in Accipiter striatus, and Trypanosoma sp. in Buteo jamaicensis.  相似文献   

12.
Avian blood parasites have been intensively studied using morphological methods with limited information on their host specificity and species taxonomic status. Now the analysis of gene sequences, especially the mitochondrial cytochrome b gene of the avian haemosporidian species of Haemoproteus, Plasmodium, and Leucocytozoon, offers a new tool to review the parasite specificity and status. By comparing morphological and genetic techniques, we observed nearly the same overall prevalence of haemosporidian parasites by microscopy (19.8%) and polymerase chain reaction (PCR) (21.8%) analyses. However, in contrast to the single valid Leucocytozoon species (L. toddi) in the Falconiformes we detected 4 clearly distinctive strains by PCR screening. In the Strigiformes, where the only valid Leucocytozoon species is L. danilewskyi, we detected 3 genetically different strains of Leucocytozoon spp. Two strains of Haemoproteus spp. were detected in the birds of prey and owls examined, whereas the strain found in the tawny owl belonged to the morphospecies Haemoproteus noctuae. Three Plasmodium spp. strains that had already been found in Passeriformes were also detected in the birds of prey and owls examined here, supporting previous findings indicating a broad and nonspecific host spectrum bridging different bird orders.  相似文献   

13.
Ninety-one birds of 23 species from Chile were examined for haematozoa; 13 birds of seven species harbored species of Haemoproteus, Leucocytozoon, Plasmodium, Trypanosoma and microfilariae. Haemoproteids (representing four species) were the most common parasites and occurred in 10 of the 13 infected birds.  相似文献   

14.
A number of PCR assays have now been described for detecting species of the avian malaria parasites Plasmodium and Haemoproteus from blood samples. The published protocols amplify both genera simultaneously, owing to the high degree of sequence similarity between them in target genes. However, the potential for coamplification in these assays of a third, closely related hematozoan parasite, Leucocytozoon spp. has been largely overlooked. In this paper, we highlight the importance of this issue, showing that coamplification of Leucocytozoon spp. occurs in several of the protocols designed to amplify avian malaria parasites. This leads not only to scoring of false positives but, in cases of mixed Leucocytozoon/malaria infections, may also lead to scoring of false negatives. We, therefore, advocate the use of a post-PCR diagnostic step, such as RFLP analysis or sequencing, to assess the contribution of Leucocytozoon spp. to overall prevalence.  相似文献   

15.
Thirty nine specimens of passerine birds belonging to 19 species and eight families were investigated by blood smear technique in four localities of Southern Turkmenistan in 3-18 August 1991. The overall prevalence of infection was 59%. Protists from the orders Haemosporida (genera Haemoproteus, Plasmodium, Leucocytozoon), Kinetoplastida (Trypanosoma), and Adeleida (Hepatozoon), as well as Microfilaria were found. Haemoproteids (the prevalence of infection is 44%), leucocytozoids (23%), malarial parasites (13%) and trypanosomes (13%) were most frequently recorded. Only low chronic infections (< 1% of infected cells for the great majority of intracellular parasites, and a few trypanosomes and Microfilaria in each blood smear) were seen. Haemoproteus belopolskyi, H. balmorali, H. dolniki, H. magnus, H. minutus, H. fringillae, H. majoris, Leucocytozoon dubreuili, and Trypanosoma avium were recorded for the first time in Turkmenistan. The former five above-mentioned species of haemoproteids are new records for the fauna of Middle Asia. Gametocytes of leucocytozoids in fusiform host cells were found for the first time in passerine birds in the Holarctic. The host is Parus bokharensis. Due to the wide distribution and the opportunity to collect a large parasitological material using harmless for hosts methods, bird haemosporidian parasites can be used as convenient models for ecological and evolutionary biology studies in South Turkmenistan. The heavily infected Orphean Warbler Sylvia hortensis is an especially convenient host for such purposes.  相似文献   

16.
Birds from south-central Cameroon, western Africa, were surveyed for blood parasites from August to October 1986. Of 331 birds examined, representing 65 species of 15 families and 6 orders (mostly passerines), 55 (17%) were found to be infected with 1 or more genera of hemotropic parasites. These included: Haemoproteus spp. (11% prevalence), Leucocytozoon spp. (3%), Plasmodium spp. (2%), Trypanosoma spp. (1%), and microfilariae of filariid nematodes (1%). Several new host-parasite associations were identified.  相似文献   

17.
Western gorillas (Gorilla gorilla) have been identified as the natural reservoir of the parasites that were the immediate precursor of Plasmodium falciparum infecting humans. Recently, a P. falciparum-like sequence was reported in a sample from a captive greater spot-nosed monkey (Cercopithecus nictitans), and was taken to indicate that this species may also be a natural reservoir for P. falciparum-related parasites. To test this hypothesis we screened blood samples from 292 wild C. nictitans monkeys that had been hunted for bushmeat in Cameroon. We detected Hepatocystis spp. in 49% of the samples, as well as one sequence from a clade of Plasmodium spp. previously found in birds, lizards and bats. However, none of the 292 wild C. nictitans harbored P. falciparum-like parasites.  相似文献   

18.
We studied the phylogeny of avian haemosporidian parasites, Haemoproteus and Plasmodium, in a number of African resident and European migratory songbird species sampled during spring and autumn in northern Nigeria. The phylogeny of the parasites was constructed through sequencing part of their mitochondrial cytochrome b gene. We found eight parasite lineages, five Haemoproteus and three Plasmodium, infecting multiple host species. Thus, 44% of the 18 haemospiridian lineages found in this study were detected in more than one host species, indicating that host sharing is a more common feature than previously thought. Furthermore, one of the Plasmodium lineages infected species from different host families, Sylviidae and Ploceidae, expressing exceptionally large host range. We mapped transmission events, e.g. the occurrence of the parasite lineages in resident bird species in Europe or Africa, onto a phylogenetic tree. This yielded three clades, two Plasmodium and one Haemoproteus, in which transmission seems to occur solely in Africa. One Plasmodium clade showed European transmission, whereas the remaining two Haemoproteus clades contained mixes of lineages of African, European or unknown transmission. The mix of areas of transmission in several branches of the phylogenetic tree suggests that transmission of haemosporidian parasites to songbirds has arisen repeatedly in Africa and Europe. Blood parasites could be viewed as a cost of migration, as migratory species in several cases were infected with parasite lineages from African resident species. This cost of migration could have considerable impact on the evolution of migration and patterns of winter distribution in migrating birds.  相似文献   

19.
M. A. Peirce    A. S. Cheke  R. A. Cheke 《Ibis》1977,119(4):451-461
A survey was carried out on the prevalence of blood parasites in birds in the Mascarene Islands. Smears from 357 birds of 25 species in 12 families were examined, of which 150 (42%) were found to harbour blood parasites. The most common parasites were Leucocytozoon ; a new species, L. zosteropis , is described from the Grey White-eye Zosterops borbonica mauritiana. This parasite was observed in smears from 68 birds of three species: Z. borbonica, Z. chloronothos and Z. olivacea. Other species of Leucocytozoon identified were L. fringillinarum from fodies, sparrows and a bulbul and L. marchouxi from two doves.
Haemoproteus was found only in domestic pigeons Columba livia and identified as H. columbae. Plasmodium relictum, P. vaughani and an unidentified species with elongate gametocytes were found in Zosterops , and Plasmodium sp. of low infection observed in other hosts. Trypanosoma mayae is redescribed from the House Sparrow Passer domesticus and the Mauritius Fody Foudia rubra , and considered to be a valid species. A new species of trypanosome, Trypanosoma phedinae , is described from the Malagasy Swallow Phedina b. borbonica. Other birds were found to harbour low infections of unidentified species of trypanosomes. A small number of birds were infected with Atoxoplasma , haemogregarines and Rickettsia-like organisms. An unidentified organism with a predilection for eosinophils was observed in several Mascarene Swiftlets Collocalia francica.
The results are discussed in relation to the possible effects of the parasites on the birds of the Mascarene Islands and comparisons made with the results of similar surveys on other Indian Ocean Islands.  相似文献   

20.
A total of 389 birds of 32 species representing 14 families from Tchad were examined for blood parasites. Eighty-nine (22.9%) harbored infections of Haemoproteus (64%), Plasmodium (12.4%), Trypanosoma (1.1%), Atoxoplasma (=Lankesterella) (5.6%), and microfilaria (28.1%). Species of Leucocytozoon were not observed in the present study. The occurrence of the different genera differed markedly between bird families; members of the Ploceidae comprised 85% of the infected birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号