首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Sugar beet (Beta vulgaris) is an important arable crop, traditionally used for sugar extraction, but more recently, for biofuel production. A wide range of pests, including beet cyst nematode (Heterodera schachtii), root‐knot nematodes (Meloidogyne spp.), green peach aphids (Myzus persicae) and beet root maggot (Tetanops myopaeformis), infest the roots or leaves of sugar beet, which leads to yield loss directly or through transmission of beet pathogens such as viruses. Conventional pest control approaches based on chemical application have led to high economic costs. Development of pest‐resistant sugar beet varieties could play an important role towards sustainable crop production while minimising environmental impact. Intensive Beta germplasm screening has been fruitful, and genetic lines resistant to nematodes, aphids and root maggot have been identified and integrated into sugar beet breeding programmes. A small number of genes responding to pest attack have been cloned from sugar beet and wild Beta species. This trend will continue towards a detailed understanding of the molecular mechanism of insect–host plant interactions and host resistance. Molecular biotechnological techniques have shown promise in developing transgenic pest resistance varieties at an accelerated speed with high accuracy. The use of transgenic technology is discussed with regard to biodiversity and food safety.  相似文献   

2.
Root responses to insect pests are an area of plant defense research that lacks much information. We have identified more than 150 sugar beet root ESTs enriched for genes responding to sugar beet root maggot feeding from both moderately resistant, F1016, and susceptible, F1010, genotypes using suppressive subtractive hybridization. The largest number of identified F1016 genes grouped into the defense/stress response (28%) and secondary metabolism (10%) categories with a polyphenol oxidase gene, from F1016, identified most often from the subtractive libraries. The differential expression of the root ESTs was confirmed with RT-PCR. The ESTs were further characterized using macroarray-generated expression profiles from F1016 sugar beet roots following mechanical wounding and treatment of roots with the signaling molecules methyl jasmonate, salicylic acid and ethylene. Of the examined root ESTs, 20, 17 and 11% were regulated by methyl jasmonate, salicylic acid and ethylene, respectively, suggesting these signaling pathways are involved in sugar beet root defense responses to insects. Identification of these sugar beet root ESTs provides knowledge in the field of plant root defense and will lead to the development of novel control strategies for control of the sugar beet root maggot.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users  相似文献   

3.

Background  

The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceaespecies, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora.  相似文献   

4.
5.
6.
Ratoon stunting disease (RSD) caused by bacterium Leifsoniaxyli subsp. xyli (Lxx) is a devastating disease of sugarcane over a large part of the world. Genetic improvement for RSD‐resistant varieties is considered the most effective method to control the disease. However, genetic improvement of sugarcane is hindered by the limited information about the molecular mechanisms underlying Lxx pathogenicity and defence responses in sugarcane. In this study, genome‐wide gene expression profiling was used to compare RSD‐resistant (CP72‐2086) and RSD‐susceptible (GT11) genotypes at different infection time points in order to identify the candidate regulators for RSD resistance. A total of 14,494 differentially expressed genes (DEGs) were identified, indicating that dramatic changes had occurred in gene expression upon Lxx infection, especially in the susceptible genotype. Enrichment analysis showed that a large number of genes related to plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis and starch and sucrose metabolism was responsible for sugarcane response to Lxx infection. Plant hormone signalling pathway genes were significantly differentially expressed at the early infection stage between the two genotypes. The resistant genotype chose the jasmonic acid‐ and ethylene‐dependent host‐defence pathways to resist Lxx infection, whereas the susceptible genotype preferred the salicylic acid‐dependent host‐defence pathways. These findings help unravel the molecular mechanisms of sugarcane plant–Lxx interactions and may pave the way for sugarcane breeding for disease resistance.  相似文献   

7.
8.
9.
10.
利用植物叶绿体基因组在进化中高度保守的特点,根据烟草、菠菜、水稻叶绿体基因组全序列资料设计合成引物,PCR扩增并克隆了甜菜叶绿体两个重要功能基因rbcL和atpB(GenBank登录号分别为DQ067450和DQ067451),并以其作为定点整合外源基因的同源重组片段,构建了Bt基因CryIAc甜菜叶绿体定点转化载体pSKARBt,酶切鉴定表明:所构建载体符合预期设计。对克隆菌菌体总蛋白进行了生物杀虫试验,结果表明:Bt基因CryIAc能够在叶绿体特异性启动子及终止子的调控下表达,并对二龄末甘蓝夜蛾有很强的毒杀作用。该载体构建对培育甜菜高抗虫品种具有重要应用价值。叶绿体转化及后续工作正在进行中。  相似文献   

11.
Differences in inherited resistance among seven sugar-beet stocks had similar effects on Myzus persicae clones representing the range of variation in aphid response to resistant and susceptible sugar beet observed in fifty-eight clones collected between 1969 and 1971. Three sugar-beet stocks were consistently resistant. Statistically significant interactions between beet stocks and aphid clones did not indicate the existence of biotypes with specific abilities to overcome resistance. M. persicae clones differed in their vigour of colonizing sugar beet, irrespective of the differences between beet stocks. The readiness of adult aphids to settle determined the size of aphid population produced and included a component related to the response of the aphid clone to sugar beet as a host, and a component related to the resistance ranking of the beet stock. Breeding sugar beet with resistance to aphids will be simplified, as the results indicate that, at present, differences between aphid biotypes need not be considered a problem.  相似文献   

12.
13.
14.
15.
16.
17.
Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae.  相似文献   

18.
《Genomics》2021,113(3):1146-1156
Investigation of cotton response to nematode infection will allow us to better understand the cotton immune defense mechanism and design a better biotechnological approach for efficiently managing pest nematodes in cotton. In this study, we firstly treated cotton by root knot nematode (RKN, Meloidogyne incognita) infections, then we employed the high throughput deep sequencing technology to sequence and genome-widely identify all miRNAs in cotton; finally, we analyzed the functions of these miRNAs in cotton response to RKN infections. A total of 266 miRNAs, including 193 known and 73 novel miRNAs, were identified by deep sequencing technology, which belong to 67 conserved and 66 novel miRNA families, respectively. A majority of identified miRNA families only contain one miRNA; however, miR482 family contains 14 members and some others contain 2–13 members. Certain miRNAs were specifically expressed in RKN-infected cotton roots and others were completely inhibited by RKN infection. A total of 50 miRNAs were differentially expressed after RKN infection, in which 28 miRNAs were up-regulated and 22 were inhibited by RKN treatment. Based on degradome sequencing, 87 gene targets were identified to be targeted by 57 miRNAs. These miRNA-targeted genes are involved in the interaction of cotton plants and nematode infection. Based on GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, 466 genes from all 636 miRNA targets were mapped to 6340 GO terms, 181 genes from 228 targets of differentially expressed miRNAs were mapped to 1588 GO terms. The GO terms were then categorized into the three main GO classes: biological processes, cellular components, and molecular functions. The targets of differentially expressed miRNAs were enriched in 43 GO terms, including 22 biological processes, 10 cellular components, and 11 molecular functions (p < 0.05). Many identified processes were associated with organism responses to the environmental stresses, including regulation of nematode larval development, response to nematode, and response to flooding. Our results will enhance the study and application of developing new cotton cultivars for nematode resistance.  相似文献   

19.

Soil-borne fungus Fusarium oxysporum f. sp. betae (Fob) is the causative agent of Fusarium yellows in sugar beet. Leaf interveinal yellowing and root vascular discoloration significantly reduce root yield as well as sucrose content and juice purity. Fob, like other fungal pathogens, initiates disease development by secreting polygalacturonase (PG) enzymes to break down plant cell walls during early stages of infection. To protect themselves, plants produce polygalacturonase-inhibiting proteins (PGIPs). In our study of sugar beet root defense responses, several PGIP genes (BvPGIPs) were identified. To determine if BvPGIPs inhibit Fob PGs, genes BvPGIP1, BvPGIP2 and Bv(FC607)PGIP1 were fused with the CaMV 35S promoter and each was expressed individually in sugar beet hairy roots. We demonstrate that all three recombinant BvPGIP proteins inhibited Fob and F. oxysporum f. sp. gladioli (Fog) PGs. A comparable level of BvPGIP activity was observed against Fob PGs, while BvPGIP2 showed higher activity against Fog PGs. Similar results were obtained when recombinant PGIPs were used to bioassay effects on Fob and Fog spore germination and hyphal growth. This is a first report that documents F. oxysporum inhibition by overexpressing BvPGIPs that may lead to improved Fusarium yellows resistance in sugar beet.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号