首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
A biosynthetic pathway for the production of (S)-3-hydroxybutyric acid (S3HB) from glucose was established in recombinant Escherichia coli by introducing the beta-ketothiolase gene from Ralstonia eutropha H16, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene from R. eutropha H16, or Clostridium acetobutylicum ATCC824, and the 3-hydroxyisobutyryl-CoA hydrolase gene from Bacillus cereus ATCC14579. Artificial operon consisting of these genes was constructed and was expressed in E. coli BL21 (DE3) codon plus under T7 promoter by isopropyl beta-D: -thiogalactoside (IPTG) induction. Recombinant E. coli BL21 (DE3) codon plus expressing the beta-ketothiolase gene, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene, and the 3-hydroxyisobutyryl-CoA hydrolase gene could synthesize enantiomerically pure S3HB to the concentration of 0.61 g l(-1) from 20 g l(-1) of glucose in Luria-Bertani medium. Fed-batch cultures of recombinant E. coli BL21 (DE3) codon plus were carried out to achieve higher titer of S3HB with varying induction time and glucose concentration during fermentation. Protein expression was induced by addition of 1 mM IPTG when cell concentration reached 10 and 20 g l(-1) (OD(600) = 30 and 60), respectively. When protein expression was induced at 60 of OD(600) and glucose was fed to the concentration of 15 g l(-1), 10.3 g l(-1) of S3HB was obtained in 38 h with the S3HB productivity of 0.21 g l(-1)h(-1). Lowering glucose concentration to 5 g l(-1) and induction of protein expression at 30 of OD(600) significantly reduced final S3HB concentration to 3.7 g l(-1), which also resulted in the decrease of the S3HB productivity to 0.05 g l(-1)h(-1).  相似文献   

2.
Feasibility of producing (R)-3-hydroxybutyric acid ((R)-3-HB) using wild type Azohydromonas lata and its mutants (derived by UV mutation) was investigated. A. lata mutant (M5) produced 780 mg/l in the culture broth when sucrose was used as the carbon source. M5 was further studied in terms of its specificity with various bioconversion substrates for production of (R)-3-HB. (R)-3-HB concentration produced in the culture broth by M5 mutant was 2.7-fold higher than that of the wild type strain when sucrose (3% w/v) and (R,S)-1,3-butanediol (3% v/v) were used as carbon source and bioconversion substrate, respectively. Bioconversion of resting cells (M5) with glucose (1% v/w), ethylacetoacetate (2% v/v), and (R,S)-1,3-butanediol (3% v/v), resulted in (R)-3-HB concentrations of 6.5 g/l, 7.3 g/l and 8.7 g/l, respectively.  相似文献   

3.
We have described the synthesis of (+)-(2R,3S,4R)-2,3,4-trihydroxycyclohexanone by the reduction of a keto-conduritol derivative, the latter being prepared in five steps from (-)-(2S,3R,4S,5S)-2,3,4-tribenzyloxy-5-hydroxycyclohexanone, which is in turn readily synthesized from D-glucose.  相似文献   

4.
(6S)-Hydroxy-3-oxo-alpha-ionol glucosides from Capparis spinosa fruits   总被引:1,自引:0,他引:1  
Two new (6S)-hydroxy-3-oxo-alpha-ionol glucosides, together with corchoionoside C ((6S,9S)-roseoside) and a prenyl glucoside, were isolated from mature fruits of Capparis spinosa. The structures were established on the basis of spectroscopic, chiroptic and chemical evidence. In addition, the 13C-resonance of C-9 was found to be of particular diagnostic value in assigning the absolute configuration at that center in ionol glycosides. The alpha-ionol derivatives are metabolites of (+)-(S)-abscisic acid.  相似文献   

5.
Ginsenosides are the active ingredients of Panax ginseng. Ginsenoside Rg(3) exists as two stereoisomers of carbon-20: 20-S-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(S)-Rg(3)) and 20-R-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(R)-Rg(3)). Recently, we reported that 20(S)-Rg(3) regulates voltage-dependent Ca(2+) channel activity and several types of ligand-gated ion channels, whereas 20(R)-Rg(3) does not have this activity. In this study, we investigated the structure-activity relationship of these two stereoisomers by NMR spectroscopy and by measurement of the current in Xenopus oocytes expressing the mouse cardiac voltage-dependent Na(+) channel (Na(v)1.5). We found that 20(S)-Rg(3) but not 20(R)-Rg(3) inhibited Na(+) channel current in a dose- and voltage-dependent manner. The difference between Rg(3) epimers in voltage-dependent ion channel regulation indicates that the structure of 20(S)-Rg(3) may be geometrically better aligned than that of 20(R)-Rg(3) for interaction with receptor regions in Na(+) channels. The (1)H and (13)C NMR chemical shifts, including all hydroxyl protons of 20(S)-Rg(3) and 20(R)-Rg(3), were completely assigned, and their tertiary structures were determined. 20(S)-Rg(3) has more tight hydrophobic packing near the chiral center than 20(R)-Rg(3). Tertiary structures and activities of 20(S)-Rg(3) and 20(R)-Rg(3) indicate that 20(S)-Rg(3) may have stronger interactions with the receptor region in ion channels than 20(R)-Rg(3). This may result in different stereoselectivity of Rg(3) stereoisomers in the regulation of voltage-dependent Na(+) channel activity. This is the first structural approach to ginsenoside action on ion channel.  相似文献   

6.
A new class of amidoalkyl dibenzofuranols and 1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-ones was synthesized in very good yields through polyphosphoric acid supported on silica (PPA-SiO2) catalyzed one-pot three component condensation of 2-dibenzofuranol; aromatic aldehydes and acetamide or benzamide or urea under solvent free conditions. At 125 °C the reaction led to the formation of amidoalkyl dibenzofuranols 5a-k where as at 160 °C cyclization take place to give oxazin-3(2H)-one analogues 6a-e. Screening all the 16 compounds for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (MTB) resulted 1-((4-chlorophenyl)(2-hydroxydibenzo[b,d]furanyl)methyl)urea 5h; 1-((4-bromophenyl)(2-hydroxydibenzo[b,d]furanyl)methyl)urea 5i; 1-phenyl-1H-benzo[2,3]benzo furo[4,5-e][1,3]oxazin-3(2H)-one 6a (MIC 3.13 μg/mL) and 1-(4-chlorophenyl)-1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-one 6b; 1-(4-bromophenyl)-1H-benzo[2,3]benzofuro [4,5-e][1,3]oxazin-3(2H)-one 6c (MIC 1.56 μg/mL) as most active antitubercular agents.  相似文献   

7.
Zhao G  Wang J  Ma K  Yang L  Wu S  Liu Y  Sun W 《Biotechnology letters》2004,26(16):1255-1259
A new isolate of Arthrobacter sulfureus , when incubated at 50 g resting cells (dry cell wt) l(-1) with 50 g glucose l(-1) and 1 g 2-aminoacetophenone l(-1) in 50 mm potassium buffer (pH 7, 4 ml) at 30 degrees C, produced ( S )-2-amino-1-phenylethanol (e.e. >99%) with 75% yield in 6 h.  相似文献   

8.
Hatanaka  Shin-Ichi  Furukawa  Jun  Aoki  Toshio  Akatsuka  Hirokazu  Nagasawa  Eiji 《Mycoscience》1994,35(4):391-394
Combining different chromatography systems, unusual nonprotein amino acids were isolated and unequivocally identified from a small amount (less than 100 g fresh weight) ofAmanita gymnopus fruit body. Without obtaining crystals of these amino acids, on the basis of1H-NMR determination, high resolution mass spectrometry, chlorine analysis and oxidation with L-amino acid oxidase, one of them proved to be a new chloroamino acid, (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid (G2). The other three were (2S)-2-amino-5-hexenoic acid (G1), (2S)-2-amino-4,5-hexadienoic acid (G3) and (2S)-2-amino-5-hexynoic acid (G4). Amino acid (G1) was also encountered for the first time in natural products. Amino acid (G3) has been reported from several kinds of fungi belonging toAmanita, subgenusLepidella. The occurrence of amino acid (G4) was already reported fromCortinarius claricolor.Part 23 in the series Biochemical studies of nitrogen compounds in fungi. Part 22, Hatanaka, S. I. et al. 1985. Trans. Mycol. Soc. Japan26: 61–68.  相似文献   

9.
Wild-type bacteria including Escherichia coli normally do not produce extracellular D-(-)-3-hydroxybutyric acid (3HB). To produce extracellular chiral 3HB, a new pathway for synthesis of 3HB was constructed by simultaneous expression of genes of beta-ketothiolase (phbA), acetoacetyl-CoA reductase (phbB), phosphor-transbutyrylase (ptb) and butyrate kinase (buk) in E. coli strain DH5alpha. E. coli DH5alpha containing any one of the four plasmids pBHR69, pUCAB, p68CM or pKKAB that harbor the phbA and phbB genes produced small amounts of 3HB, ranging from 75 to 400 mg l(-1), while E. coli DH5alpha harboring p68CMPTK containing genes of phbA, phbB, ptb and buk increased the 3HB concentration to 1.4 g l(-1) in shake flasks supplemented with LB broth and 20 g l(-1) glucose. 3HB production was further improved to over 2 g l(-1) in shake flasks when E. coli DH5alpha hosted two plasmids simultaneously that separately contained phbA and phbB in one plasmid while ptb and buk in the other. A batch fermentation run in a 5-l fermenter produced approximately 5 g l(-1) 3HB after 24 h. A fed-batch process increased 3HB production to 12 g l(-1) after 48 h of fermentation.  相似文献   

10.
The reaction of (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (1a), one of the major peroxidation products of linoleic acid and an important physiological mediator, with the Fenton reagent (Fe(2+)/EDTA/H(2)O(2)) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with >80% substrate consumption after 4h to give a defined pattern of products, the major of which were isolated as methyl esters and were subjected to complete spectral characterization. The less polar product was identified as (9Z,11E)-13-oxo-9,11-octadecadienoate (2) methyl ester (40% yield). Based on 2D NMR analysis the other two major products were formulated as (11E)-9,10-epoxy-13-hydroxy-11-octadecenoate (3) methyl ester (15% yield) and (10E)-9-hydroxy-13-oxo-10-octadecenoate (4) methyl ester (10% yield). Mechanistic experiments, including deuterium labeling, were consistent with a free radical oxidation pathway involving as the primary event H-atom abstraction at C-13, as inferred from loss of the original S configuration in the reaction products. Overall, these results provide the first insight into the products formed by oxidation of 1a with the Fenton reagent, and hint at novel formation pathways of the hydroxyepoxide 3 and hydroxyketone 4 of potential (patho)physiological relevance in settings of oxidative stress.  相似文献   

11.
In higher plants, C6 and C9 aldehydes are formed from C18 fatty acids, such as linoleic or linolenic acid, through formation of 13- and 9-hydroperoxides, followed by their stereospecific cleavage by fatty acid hydroperoxide lyases (HPL). Some marine algae can also form C6 and C9 aldehydes, but their precise biosynthetic pathway has not been elucidated fully. In this study, we show that Laminaria angustata, a brown alga, formed C6 and C9 aldehydes enzymatically. The alga forms C9 aldehydes exclusively from the C20 fatty acid, arachidonic acid, while C6 aldehydes are derived either from C18 or from C20 fatty acid. The intermediates in the biosynthetic pathway were trapped by using a glutathione/glutathione peroxidase system, and subjected to structural analyses. Formation of (S)-12-, and (S)-15-hydroperoxy arachidonic acids [12(S)HPETE and 15(S)HPETE] from arachidonic acid was confirmed by chiral HPLC analyses. These account respectively for C9 aldehyde and C6 aldehyde formation, respectively. The HPL that catalyzes formation of C9 aldehydes from 12(S)HPETE seems highly specific for hydroperoxides of C20 fatty acids.  相似文献   

12.
Cheng LQ  Na JR  Bang MH  Kim MK  Yang DC 《Phytochemistry》2008,69(1):218-224
Ginseng saponin, the most important secondary metabolite in ginseng, has various pharmacological activities. Many studies have been directed towards converting major ginsenosides to the more active minor ginsenoside, Rg3. Due to the difficulty in preparing ginsenoside Rg3 enzymatically, the compound has been mainly produced by either acid treatment or heating. A microbial strain GS514 was isolated from soil around ginseng roots in a field and used for enzymatic preparation of the ginsenoside Rg3. Blast results of the 16S rRNA gene sequence of the strain GS514 established that the strain GS514 belonged to the genus Microbacterium. Its 16S rRNA gene sequence showed 98.7%, 98.4% and 96.1% identity with those of M. esteraromaticum, M. arabinogalactanolyticum and M. lacticum. Strain GS514 showed a strong ability to convert ginsenoside Rb1 or Rd into Rg3. Enzymatic production of Rg3 occurred by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1 showing the biotransformation pathway: Rb1-->Rd-->Rg3.  相似文献   

13.
2,3-Butanediol (2,3-BD) is a major metabolite produced by Klebsiella pneumoniae KCTC2242, which is a important chemical with wide applications. Three genes important for 2,3-BD biosynthesis acetolactate decarboxylase (budA), acetolactate synthase (budB), and alcohol dehydrogenase (budC) were identified in K. pneumoniae genomic DNA. With the goal of enhancing 2,3-BD production, these genes were cloned into pUC18K expression vectors containing the lacZ promoter and the kanamycin resistance gene to generate plasmids pSB1-7. The plasmids were then introduced into K. pneumoniae using electroporation. All strains were incubated in flask experiments and 2,3-BD production was increased by 60% in recombinant bacteria harboring pSB04 (budA and budB genes), compared with the parental strain K. pneumoniae KCTC2242. The maximum 2,3-BD production level achieved through fedbatch fermentation with K. pneumoniae SGJSB04 was 101.53 g/l over 40 h with a productivity of 2.54 g/l.h. These results suggest that overexpression of 2,3-BD synthesisrelated genes can enhance 2,3-BD production in K. pneumoniae by fermentation.  相似文献   

14.
A (2R,3R)-2,3-butanediol dehydrogenase (BDH99::67) from Paenibacillus polymyxa ATCC 12321 was functionally characterized. The genetic characteristics of BDH99::67 are completely different from those of meso- and (2S,3S)-2,3-butanediol dehydrogenases. The results showed that BDH99::67 belongs to the medium-chain dehydrogenase/reductase superfamily and not to the short-chain dehydrogenase/reductase superfamily, to which meso- and (2S,3S)-2,3-butanediol dehydrogenases belong.  相似文献   

15.
Ethanol was a major byproduct of 2,3-butanediol (2,3-BD) fermentation by Klebsiella oxytoca ME-UD-3. In order to achieve a high efficiency of 2,3-BD production, K. oxytoca mutants deficient in ethanol formation were successfully constructed by replace the aldA gene coding for aldehyde dehydrogenase with a tetracycline resistance cassette. The results suggested that inactivation of aldA led to a significantly improved 2,3-BD production. The carbon flux to 2,3-BD was enhanced by eliminating the byproducing ethanol and at the same time reducing the accumulation of another byproduct acetoin. At last, by fed-batch culturing of the mutant, the final 2,3-BD titer up to 130 g/l with the productivity of 1.63 g/l.h and the 2,3-BD yield relative to glucose of 0.48 g/g was obtained.  相似文献   

16.
The CH(2)Cl(2)/CH(3)OH (1/1) extract of the dried stem bark of Terminalia superba afforded two compounds, (7S,8R,7'R,8'S)-4'-hydroxy-4-methoxy-7,7'-epoxylignan and meso-(rel 7S,8R,7'R,8'S)-4,4'-dimethoxy-7,7'-epoxylignan along with 11 known compounds. The structures of the compounds were established by analysing the spectroscopic data and also comparing it with the data of previously known analogues. All the isolated compounds were evaluated for their glycosidase inhibition activities. Gallic acid and methyl gallate showed significant alpha-glucosidase inhibition activity.  相似文献   

17.
18.
The 2,3-butanediol (2,3-BD) dehydrogenase gene (bdhA) of Bacillus licheniformis BL1 was disrupted to construct the tetramethylpyrazine (TMP)-producing BLA strain. During microaerobic fermentation, the bdhA-disrupted BLA strain produced 46.98 g TMP/l, and this yield was 23.99 % higher than that produced by the parent BL1 strain. In addition, the yield of acetoin, which is a TMP precursor, also increased by 28.98 % in BLA. The TMP production by BL1 was enhanced by supplementing the fermentation medium with 2,3-BD. The yield of TMP improved from 37.89 to 44.77 g/l as the concentration of 2,3-BD increased from 0 to 2 g/l. The maximum TMP and acetoin yields increased by 18.16 and 17.87 %, respectively with the increase in 2,3-BD concentration from 0 to 2 g/l. However, no increase was observed when the concentration of 2,3-BD in the matrix was ≥3 g/l. This study provides a valuable strategy to enhance TMP and acetoin productivity of mutagenic strains by gene manipulation and optimizing fermentation conditions.  相似文献   

19.
The synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate ((R)-ECHB) from ethyl 4-chloroacetoacetate was studied using whole recombinant cells of Escherichia coli expressing a secondary alcohol dehydrogenase of Candida parapsilosis. Using 2-propanol as an energy source to regenerate NADH, the yield of (R)-ECHB reached 36.6 g/l (more than 99% ee, 95.2% conversion yield) without addition of NADH to the reaction mixture.  相似文献   

20.
An NADH-dependent (S)-specific 3-oxobutyryl-CoA reductase from Clostridium tyrobutyricum was purified 15-fold with a yield of 46%. It was homogeneous by gel electrophoresis after three chromatographic steps. The apparent molecular mass was estimated by column chromatography to be 240 kDa. SDS-gel electrophoresis revealed the presence of 33 kDa subunits. Substrates of the enzyme were ethyl and methyl 3-oxobutyrate, 3-oxobutyryl-N-acetylcysteamine thioester, and 3-oxobutyryl coenzyme A. The specific activities were 340 and 10 U (mg protein)-1 for the reduction of 3-oxobutyryl coenzyme A and ethyl 3-oxobutyrate, respectively; the Michaelis constants were 300 M and 300 mM, respectively. The identity of 12 N-terminal amino acid residues was determined. The ezmyme was used in a preparative reduction of substrate, yielding ethyl (S)-3-hydroxybutyrate (>99% enantiomeric excess).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号