首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Summary Lectin binding and density gradient centrifugation were explored for isolating epithelial cells from trout liver. Hepatocytes exhibited preferential attachment to coverslips coated withPhaseolus vulgaris erythroagglutinin. Biliary epithelial cells attached with glycine max agglutinin; however, significant attachment of cellular debris limited the use of glycine max agglutinin. Percoll-density gradient centrifugation separated liver cells into two distinct populations with biliary cells and hepatocytes banding at densities of 1.04 and 1.09, respectively. A discontinuous gradient composed of 13% Ficoll (wt/wt) separated biliary cells from hepatocytes. The recovery of highly enriched biliary epithelial cells from trout liver using Ficoll gradients yielded approximately 8 million cells (0.1 ml packed cells) from 10 g liver. Western blot analysis demonstrated that the cytokeratin profile for extracts from biliary epithelial cell-enriched populations differ significantly from those seen with whole liver extracts or with extracts from hepatocyte-enriched populations. Ficoll-gradient purified biliary cells and hepatocytes attached to culture plates coated with trout skin extract and carried out linear incorporation of leucine into protein and thymidine into DNA for 24 h. A mixture of growth hormones (insulin, epidermal growth factor, and dexamethasone) stimulated thymidine incorporation into DNA; however, long-term culture of dividing biliary epithelial cells was not achieved. Chemical analysis of neutral and acidic glycolipids indicated that hepatocytes and biliary cells have similar glycolipid profiles with an exception in the region of GM3 mobility, which is attributable to differences in the ceramide moiety. These studies provide a starting point for further characterization of unique cell types of the trout liver that may be important in their response to toxic and carcinogenic agents.  相似文献   

2.
Summary Composition and interactions of cell types in rainbow trout (Oncorhynchus mykiss) liver digested with collagenase and cultured in serum-free media were investigated. Suspensions obtained after digesting trout liver with collagenase contained all the cell types present in the liver, including liver parenchymal cells (hepatocytes), biliary epithelial cells, sinusoidal endothelium, fat-storing cells of Ito, and macrophages. A major cell pellet, mainly hepatocytes but containing significant numbers of biliary epithelial cells, was obtained by centrifuging the cell suspension at 120×g for 1 min. Cells present in this pellet quantitatively attached to culture plates coated with a trout skin extract and remain attached for 4 to 6 d with good retention of intracellular enzymes and DNA. When in culture, significant changes in and among the cells were observed. Initial preparations were rounded, single cells. Within several hours, however, cellular interactions leading to aggregation became evident and aggregates increased in size for 2 to 3 d. Scanning electron microscopy (EM) showed frequent shaftlike projections from margins of the aggregates. Transmission EM indicated that these projections represent biliary ductules forming in vitro. Adjacent hepatocytes also showed plasma membrane specializations forming junctional complexes and canaliculi characteristics of normal trout liver. After 5 to 6 d in culture, significant numbers of the cell aggregates dislodged from the plate. Analysis showed the dislodged cells were viable but vacuolated. The reestablishment in vitro of morphologic relationships resembling in situ tissue components suggest these culture preparations may have significant utility in cooperative metabolic studies of cell interactions in trout liver. Supported by grant CA45131 from the National Cancer Institute, Bethesda, MD.  相似文献   

3.
Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. the liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a ‘bona fide'' organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult.  相似文献   

4.
Wendt M  Kuo-Huang LL  Sievers A 《Planta》1987,172(3):321-329
The polar arrangement of cell organelles in Lepidium root statocytes is persistently converted to a physical stratification during lateral centrifugation (the centrifugal force acts perpendicular to the root long axis) or by apically directed centrifugation combined with cytochalasin-treatment. Lateral centrifugation (10 min, 60 min at 10\g or 50\g) causes displacement of amylplasts to the centrifugal anticlinal cell wall and shifting of the endoplasmic reticulum (ER) complex to the centripetal distal cell edge. After 60 min of lateral centrifugation at 10\g or 50\g all roots show a clear gravitropic curvature. The average angle of curvature is about 40° and corresponds to that of roots stimulated gravitropically in the horizontal position at 1\g in spite of the fact that the gravistimulus is 10-or 50-fold higher. Apically directed centrifugation combined with cytochalasin B (25 g\ml-1) or cytochalasin D (2.5 g\ml-1) incubation yields statocytes with the amyloplasts sedimented close to the centrifugal periclinal cell wall and ER cisternae accumulated at the proximal cell pole. Gravitropic stimulation for 30 min in the horizontal position at 1\g and additional 3 h rotation on a clinostat result in gravicurvature of cytochalasin B-treated centrifuged (1 h at 50\g) roots, but because of retarded root growth the angle of curvature is lower than in control roots. Cytochalasin D-treatment during centrifugation (20 min at 50\g) does not affect either root growth or gravicurvature during 3 h horizontal exposure to 1\g relative to untreated roots. As lateral centrifugation enables only short-term contact between the amyloplasts and the distal ER complex at the onset of centrifugation and apically directed centrifugation combined with cytochalasin-treatment even exclude any contact the integrity of the distal cell pole need not necessarily be a prerequisite for graviperception in Lepidium root statocytes.Abbreviations CB cytochalasin B - CD cytochalasin D - ER endoplasmic reticulum - g gravitational acceleration  相似文献   

5.
Sperm cryopreservation protocols for brown bear (Ursus arctos) require the centrifugation of semen samples to increase sperm concentration and to clean urine in contaminated samples. We evaluated the effect of centrifugation regimes (time and relative centrifugal force—RCF) on the quantity of sperm recovered and the quality of post-thawed sperm. Thirteen brown bears were electroejaculated. The ejaculates were diluted 1:1 in Tris–citric acid–glucose (TCG) extender and centrifuged with different RCF/time combinations: 600×g, 1,200×g and 2,400×g, for 3, 6 or 12 min. After centrifugation, spermatozoa were diluted in TES–Tris–fructose extender with egg yolk and glycerol (final glycerol concentration of 8%) and frozen in 0.25-mL straws. In the post-thawed semen, motility was assessed by CASA, and acrosomal status (PNA-FITC), viability (SYBR-14 with propidium iodide) and chromatin status (SCSA) were determined by flow cytometry. The longest centrifugation time (12 min) significantly decreased some motility parameters. Sperm recovery significantly decreased in brown bear at 600×g. Our results suggest that brown bear spermatozoa are more sensitive to long centrifugation times than to high RCF. Centrifugation regimes showed no effects on the post-thawing chromatin status. We recommend preparing the brown bear semen for freezing by centrifugation 1,200×g or 2,400×g for 6 min, after electroejaculation and dilution 1:1 in TCG extender, since these procedures increase the spermatozoa recovery without harmful effects on the post-thawed quality of brown bear spermatozoa.  相似文献   

6.
Cultured epithelial cell lines from normal rat livers were shown to undergo gradual transformation and malignancy which increased with time. Morphological changes appeared both before and after cells had attained a malignant state, as detected by agar tests. The progression of the degree of malignancy was determined by the morphological appearance of the cells, the increase in the number and size of cell colonies in soft agar, the expression of gamma glutamyl transferase (GT) and the shortening of the latency period necessary for tumor formation after transplantation to syngeneic rats of cells from sequential passages.  相似文献   

7.
Summary Primary cultured epithelial cells derived from the rat dorsolateral prostate proliferated in serum-free nutrient medium WAJC 404 supplemented with mitogens: insulin (650 nM), cholera toxin (120 pM), epidermal growth factor (EGF) (2.5 nM), dexamethasone (300 nM), and bovine pituitary extract (25 μg/ml). The culture consisted of two types of epithelial cell colonies: one originated from single cells or small cell aggregates and the other was epithelial cell outgrowth from small tissue fragments attached to a substratum. There were differences in requirements for the mitogens between the two types of colonies. Requirements for cholera toxin, bovine pituitary extract, and dexamethasone were higher in the former type of colonies, and those for EGF were higher in the latter type of colonies. Proliferation of the epithelial cells in either type, of colony was suppressed more than 50% by 1 nM dihydrotestosterone. This suppressive effect was not mediated by stromal component in the tissue fragments, and was counteracted by cyproterone acetate, indicating specific and direct action of the androgen on prostate epithelial cells. The results suggest that there is discrete participation of polypeptide growth factors and androgen in proliferation and differentiation, respectively, of prostate epithelial cells in vivo.  相似文献   

8.
Plasma membranes can be isolated from a variety of plant tissues by first preparing a post-mitochondrial membrane fraction enriched in plasma membranes, by differential centrifugation, and partitioning this on a dextran-polyethylene glycol two-phase system. With wild oat aleurone, however, we observed that differential centrifugation could not be used to produce a microsomal fraction enriched in plasma membrane. Approximately 70% of the plasma membrane in aleurone homogenates was pelleted by sequential centrifugation at 100 g× 10 min and 1000 g× 10 min. The remainder sedimented at 112 000 g× 1 h. All the material that was pelletable by centrifugation was, therefore, subjected to dextran-polyethylene glycol two-phase partitioning. The plasma membrane marker enzymes glucan synthase II (GSII, EC 2. 4. 1. 34) and UDP-glucose:sterol glucosyltransferase (SGT, EC 2. 4. 1.) were enriched in the upper phase, whereas cytochrome c oxidase activity (EC 1. 9. 3. 1), a mitochondrial marker enzyme, was depleted. The presence of endoplasmic reticulum (ER) and protein body membranes in the phase system was assessed by probing western blots, of SDS-PAGE separated proteins, with polyclonal antiserum either to binding protein (BiP, an ER marker) or to tonoplast intrinsic protein (TIP, a protein body membrane marker). BiP and TIP were present in the lower phase, but were not detected in the upper phase. In addition, the polypeptide patterns of material in the upper and lower phases were very different. These observations suggested that high purity aleurone plasma membrane had been isolated. Although the procedure for isolating plasma membranes was applicable to both aleurone protoplasts and layers, the polypeptide patterns of plasma membranes prepared from these sources were very different. The major protein components of wild oat aleurone were 7 S and 12 S storage globulins. These proteins were present in the lower phase, but not in the plasma membrane enriched upper phase, after aqueous two-phase partitioning. Differential centrifugation studies showed that it was necessary to homogenise aleurone in a buffer of pH 6. 0 or less if a soluble protein fraction, essentially devoid of storage globulins, was to be obtained. The use of these fractionation techniques is discussed in relation to photoaffinity labelling of gibberellin (GA)-binding proteins in aleurone.  相似文献   

9.
This study reports some findings on the effects of centrifugation on the viability of mammalian cells. The authors used Burkitt lymphoma cells cultivated in a synthetic medium containing 10% fetal calf serum for all experiments. Batch centrifugations were conducted in a RC2-B centrifuge (Ivan Sorvall, Incorporated, Norwalk, Connecticut USA) operated at 0 and 25°C. During centrifugation we exposed the cells to gravitational fields ranging from 24,800 to 42.200g. The results showed that at, 0°C and 25,800 or 42,000g no loss in cell viability occurred for up to 90 min exposures in the centrifugal field. However, at 25°C and for gravitational fields of 24,800 and 42,000g, there were appreciable losses in cell viability. Continuous centrifugation studies in the Sharples supercentrifuge (Division of Penn Salt Corporation, Warminister, Pennsylvania USA) were also conducted with bowl speeds up to 28,000 rpm (19,000g) and flow rates ranging from 1.4 to 20 1, hr. Slight, losses in cell viability were noted and postulated as caused by the shear stresses encountered by the cells. Some pumping studies using the lymphoma cells substantiate this conclusion.  相似文献   

10.
Summary Long-term primary cultures of epithelial cells from rainbow trout (Oncorhynchus mykiss) liver have been established. Nearly homogenous (>97%) populations of hepatocytes were placed into primary culture and remained viable and proliferative for at least 70 d. In addition to hepatocytes, proliferative biliary cells persisted in the cultures for at least 30 d. Finally, a third type of epithelial cell, which we have termed a “spindle cell,” consistently appeared and proliferated to confluence in these cultures. The confluent cultures of spindle cells were successfully subcultured and passaged. The initial behavior, growth, and optimization of serum and media requirements for these cells is described. All three cell types proliferated as measured by thymidine incorporation, autoradiography, proliferating cellular nuclear antigen analysis, and propidium iodine staining. Further efforts to characterize the cells included western blotting and immunohistochemical staining with antibodies to cytokeratins previously reported in fish liver. From these data, it appears that all three cell populations are epithelial in nature. Furthermore, significant changes in actin organization, often indicative of transformation or pluripotent cells, were observed with increased time in primary culture.  相似文献   

11.
For optimal mass production of Pasteuria penetrans in vivo, it is important to develop a system that can ensure 100% nematode attachment of the bacteria and high bacterial infection after inoculation. In this study, effects of endospore concentration and centrifugation parameters on attachment were investigated, followed by evaluation of impacts of centrifugation on endospore dislodgement, Meloidogyne incognita juvenile (J2) mortality, J2 infectivity, and bacterial infectivity. Endospore concentration and percentage of attachment fit well to mass-action and logit models, with the former being superior. Centrifugation had no impact on J2 mortality but had a great impact on endospore dislodgement in sand and water, nematode infectivity and bacterial infectivity. At nematode concentration of 2×103 J2/mL, the optimal system for endospore attachment was developed which consisted of bacteria at 2×104 endospores/mL, and centrifugation at 9000×g for 3 min three times. This system generated 100% attachment with approximately seven endospores/J2. After inoculation of treated nematodes to tomato plants, the inoculum yielded 47% bacterial infection, superior to 17% infection observed in centrifugation at 6000×g. Endospore dislodgement occurred after placing the centrifuged inoculated nematodes in sand or water for 24 and 48 h, which was more severe in centrifugation at 6000 than at 9000×g. Results also indicated that centrifugation led to lower nematode infectivity, regardless of endospore presence and centrifugation at 9000 or 6000×g, compared with the no centrifugation control.  相似文献   

12.
Summary Isolation and culture techniques for hepatocytes from whole livers of the cynomolgus monkey,Macaca fascicularis, are described. Hepatocytes were isolated by two-step perfusion of livers, using collagenase with hyaluronidase; fructose and trypsin inhibitor were included to reduce cell loss. Yields from a single liver average 4×109 cells with viabilities of 90.8±5.7%. Cells, plated on collagen substrates, were assessed for changes in morphology and various marker enzyme activities over a period of 7 d in culture. Cells exhibited a morphology similar to that observed for this species in vivo; little change in attached and spread cells was observed over the length of time monitored. Enzyme activities for catalase, succinate dehydrogenase, and tyrosine aminotransferase were observed to decrease significantly (though considerable activity remained), whereas acid phosphatase and 5′-nucleotide phosphodiesterase remained unchange. Activity of cytochrome P-450 reductase was observed to increase slightly for the first 2 d, then decrease to about 60% of initial levels. Activity of α-mannosidase was stable for 4 d but was observed to be increased at Day 7. Cells were observed to retain metabolic responsiveness demonstrated by glucose production by both gluconeogenesis and glycogenolysis in response to glucagon stimulation. The monkey hepatocytes obtained by methods described here thus retain hepatocellular morphology and activity through at least 1 wk in culture without medium or culture modification.  相似文献   

13.
NASH is a chronic liver disease that affects 3%–6% of individuals and requires urgent therapeutic developments. Isolating the key cell types in the liver is a necessary step towards understanding their function and roles in disease pathogenesis. However, traditional isolation methods through gradient centrifugation can only collect one or a few cell types simultaneously and pose technical difficulties when applied to NASH livers. Taking advantage of identified cell surface markers from liver single-cell RNAseq, here we established the combination of gradient centrifugation and antibody-based cell sorting techniques to isolate five key liver cell types (hepatocytes, endothelial cells, stellate cells, macrophages and other immune cells) from a single mouse liver. This method yielded high purity of each cell type from healthy and NASH livers. Our five-in-one protocol simultaneously isolates key liver cell types with high purity under normal and NASH conditions, enabling for systematic and accurate exploratory experiments such as RNA sequencing.  相似文献   

14.
15.
Summary The West-Indian manatee,Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5×103 cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.  相似文献   

16.
Tobacco leaves were inoculated with tobacco mosaic virus labeled with 32P or 35S. After various intervals, extracts of the leaves were prepared. In extracts from leaves infected for 5 to 360 min, about 40 to 60% of the virus retained on leaves was recovered in the pellet of the homogenate centrifuged at 12 000 × g. The virus associated with the 12 000 × g pellet was dissociable by treatment with pancreatic RNase, alkali or sodium dodecyl sulfate (SDS). The parental virus extracted by SDS from the pellet at 12 000 × g had a large amount of partially uncoated virus possessing naked RNA. Analysis by density gradient centrifugation suggested that, in addition to partially uncoated virus, some fragmented RNA was also associated with the 12 000 × g pellet. This fragmented RNA seemed to be derived from partially uncoated virus. Density gradient analysis of SDS extracts from the 12 000 × g pellet suggested that some of the virus underwent uncoating at the internal regions of the virus particle.  相似文献   

17.
The Tritium (T) uptake method for detecting hydrogenase (Hase) was applied to measure the Hase activity of aerobic nitrogen-fixing bacterium Azotobacter agile. The cell-free extract of this bacterium contains the ATP-stimulated T-uptake activity, and this activity was separated from the nitrogenase activity. In the supernatant obtained by centrifugation at 20,000 × g for 30 min, this ATP-stimulated T-uptake activity existed mainly in large molecular weight fraction and was distributed to precipitate at 184,000 × g for 1 hr. After this ultra-centrifugation, the distribution patterns of methylene blue (MB) reduction and T-uptake activities were significantly different from each other, and MB reduction activity remained much more in the supernatant. The Hase activity detected by both T-uptake and MB reduction was mainly in the particle fraction precipitated at 20,000 × g for 30 min from the cell-free extract. When the activities of the praticle fraction were solubilized with Triton X–100, the ATP-stimulated T-uptake activity was effectively solubilized. These results imply that the cell-free extract of Azotobacter agile contained some different kinds of hydrogenases which catalyzed MB reduction, T-uptake and ATP-stimulated T-uptake activities at different intensities from each other.  相似文献   

18.
Embryogenic cell suspensions of rubber derived from immature inflorescences and inner integuments of immature fruits released 3.1 ± 0.2 × 107 protoplasts g-1 f. wt. (mean ± s.e.m, n = 10) and 3.2 ± 0.2 × 107 protoplasts g-1 f. wt., with mean viabilities of 83 ± 2% and 77 ± 8%, respectively. Sustained mitotic division was observed only when protoplasts were cultured in KPR liquid medium on nitrocellulose membranes overlying the same semi-solid medium containing Lolium multiflorum nurse cells. Protoplast-derived cell colonies were produced within 2 months of culture. Protoplast-derived cell colonies proliferated, upon subculture to MS-based regeneration medium, with 40% of the protoplast-derived calli developing somatic embryos. The latter germinated into plants on the same medium after 3 months of culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
《Organogenesis》2013,9(2):208-215
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

20.
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号