首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
神经生长因子促进坐骨神经再生修复的酶组织化学研究   总被引:6,自引:0,他引:6  
目的研究对兔右坐骨神经损伤后局部给予蛇毒神经生长因子(NGF),观察坐骨神经酶活性变化和超微结构的恢复情况,探讨NGF对神经再生的影响.方法乙酰胆碱酯酶(AChE)、酸性磷酸酶(ACPase)的酶组织化学技术和电镜技术.结果神经损伤后:AChE活性明显下降,NGF组的AChE活性恢复快于盐水对照组;ACPase活性逐渐增高,NGF组的ACPase活性恢复时间短于盐水对照组.坐骨神经的超微结构在神经损伤后也发生变化,NGF组的变化程度小于盐水对照组,恢复时间短于对照组.结论NGF可通过影响酶物质的代谢而起到加快受损神经恢复的作用.为临床上应用蛇毒NGF治疗周围神经损伤提供形态学依据.  相似文献   

2.
Stromal cell-derived factor-1α (SDF-1α) plays an important role after injury. However, little is known regarding its temporal and spatial expression patterns or how it interacts with glial cells after optic nerve crush injury. We characterized the temporal and spatial expression pattern of SDF-1α in the retina and optic nerve following optic nerve crush and demonstrated that SDF-1α is localized to the glial cells that are distributed in the retina and optic nerve. CXCR4, the receptor for SDF-1α, is expressed along the ganglion cell layer (GCL). The relative expression levels of Sdf-1α mRNA and SDF-1α protein in the retina and optic nerve 1, 2, 3, 5, 7, 10 and 14 days after injury were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay, respectively, and the Cxcr4 mRNA expression was determined using real-time PCR. Immunofluorescence and immunohistochemical approaches were used to detect the localization of SDF-1α and CXCR4 after injury. The upregulation of Sdf-1α and Cxcr4 mRNA was detected as early as day one after injury in the retina and day two in the optic nerve, the expression peaks 5–7 days after injury. The expression of Sdf-1α and Cxcr4 mRNA was maintained for at least 14 days after the optic nerve crush injury. Furthermore, SDF-1α-positive zones were distributed locally in the reactive glial cells, which suggested potential autocrine stimulation. CXCR4 was mainly expressed in the GCL, which was also adjacent to the the glial cells. These findings suggest that following optic nerve crush, the levels of endogenous SDF-1α and CXCR4 increase in the retina and optic nerve, where activated glial cells may act as a source of increased SDF-1α protein.  相似文献   

3.
Vinorine is a monoterpenoid indole alkaloid, a type of natural alkaloids. Growing reports exhibited the numerous pharmacology activities of vinorine such as anti-inflammation, anti-bacterial and anti-tumor. In this study, the effect of vinorine injection (7.5, 15 and 30 mg/kg) on motor function, sensation and nerve regeneration in sciatic nerve crush injury rat was investigated. The results of behavioral analysis, electrophysiological analysis and muscle histological analysis suggested that vinorine promoted the motor function recovery after sciatic nerve injury. The results of mechanical withdrawal thresholds assay and hot plate test demonstrated that vinorine improved the sensation recovery after sciatic nerve injury. The results of Fluoro-gold retrograde labeling, transmission electron microscope assay, toluidine blue and HE staining showed that vinorine attenuated the nerve damage caused by sciatic nerve injury and promoted the nerve regeneration. Furthermore, nerve growth factor (NGF) and its downstream extracellular signal-regulated kinase (ERK) signaling pathway participated in the neuro-recovery effect of vinorine after crush. In conclusion, vinorine treatment accelerated the sciatic nerve regeneration, motor function recovery and sensation recovery after crush injury via regulation of NGF and ERK activity. These results suggested that vinorine is a promising agent for never injury therapy.  相似文献   

4.
Neuroprotective effects of metformin have been increasingly recognized in both diabetic and non-diabetic conditions. Thus far, no information has been available on the potential beneficial effects of metformin on peripheral nerve regeneration in diabetes mellitus. The present study was designed to investigate such a possibility. Diabetes was established by a single injection of streptozotocin at 50 mg/kg in rats. After sciatic nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with metformin (30, 200 and 500 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. It was found that metformin significantly enhanced axonal regeneration and functional recovery compared to saline after sciatic nerve injury in diabetic rats. In addition, metformin at 200 and 500 mg/kg showed better performance than that at 30 mg/kg. Taken together, metformin is capable of promoting nerve regeneration after sciatic nerve injuries in diabetes mellitus, highlighting its therapeutic values for peripheral nerve injury repair in diabetes mellitus.  相似文献   

5.
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are molecules which regulate the development and maintenance of specific functions in different populations of peripheral and central neurons, amongst them sensory neurons of neural crest and placode origin. Under physiological conditions NGF is synthesized by peripheral target tissues, whereas BDNF synthesis is highest in the CNS. This situation changes dramatically after lesion of peripheral nerves. As previously shown, there is a marked rapid increase in NGF mRNA in the nonneuronal cells of the damaged nerve. The prolonged elevation of NGF mRNA levels is related to the immigration of activated macrophages, interleukin-1 being the most essential mediator of this effect. Here we show that transsection of the rat sciatic nerve also leads to a very marked increase in BDNF mRNA, the final levels being even ten times higher than those of NGF mRNA. However, the time-course and spatial pattern of BDNF mRNA expression are distinctly different. There is a continuous slow increase of BDNF mRNA starting after day 3 post-lesion and reaching maximal levels 3-4 wk later. These distinct differences suggest different mechanisms of regulation of NGF and BDNF synthesis in non-neuronal cells of the nerve. This was substantiated by the demonstration of differential regulation of these mRNAs in organ culture of rat sciatic nerve and Schwann cell culture. Furthermore, using bioassays and specific antibodies we showed that cultured Schwann cells are a rich source of BDNF- and ciliary neurotrophic factor (CNTF)-like neurotrophic activity in addition to NGF. Antisera raised against a BDNF-peptide demonstrated BDNF-immunoreactivity in pure cultured Schwann cells, but not in fibroblasts derived from sciatic nerve.  相似文献   

6.
Que HP  Li X  Li S  Liu SJ 《生理学报》2007,59(6):791-795
对GPI-1046是否具有神经营养作用目前有两种不同的认识。Steiner等认为GPI-1046能促进体外培养的感觉神经节神经元突起生长。但Harper等却没能证明GPI-1046有这样的作用。由于GPI-1046在临床上具有重要应用价值和前景,我们重新评价了GPI-1046对体外培养鸡胚神经节的神经营养作用,发现在低浓度神经生长因子(nerve growth factor,NGF)存在下,GPI-1046能明显促进鸡背根神经节神经突起的生长。  相似文献   

7.
Ginsenoside Rg1 (GRg1) has been considered to have therapeutic potential in promoting peripheral nerve regeneration and functional recovery after sciatic nerve injuries. However, the mechanism underlying the beneficial effect of GRg1 on peripheral nerve regeneration is currently unclear. The possible effect of GRg1 on Schwann cells (SCs), which were subjected to oxidative injury after nerve injury, might contribute to the beneficial effect of GRg1 on nerve regeneration. The present study was designed to investigate the potential beneficial effect of GRg1 on SCs exposed to oxidative injury. The oxidative injury to SCs was induced by hydrogen peroxide. The effect of GRg1 (50 μM) on SCs exposed to oxidative injury was measured by the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT) in SCs. The cell number and cell viability of SCs were evaluated through fluorescence observation and MTT assay. The apoptosis of SCs induced by oxidative injury was evaluated by an apoptosis assay. The expression and secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were evaluated using RT-PCR, Western blotting, and an ELISA method. We found that GRg1 significantly up-regulated the level of SOD, GSH and CAT, and decreased the level of MDA in SCs treated with hydrogen peroxide. In addition, GRg1 has been shown to be able to inhibit the proapoptotic effect of hydrogen peroxide, as well as inhibit the detrimental effect of hydrogen peroxide on cell number and cell viability. Furthermore, GRg1 also increased the mRNA levels, protein levels and secretion of NGF and BDNF in SCs after incubation of hydrogen peroxide. Further study showed that preincubation with H89 (a PKA inhibitor) significantly inhibited the effects induced by hydrogen peroxide, indicating that the PKA pathway might be involved in the antioxidant effect and neurotrophic factors (NTFs) promoting effect of GRg1. In addition, a short-term in vivo study was performed to confirm and validate the antioxidant effect and nerve regeneration-promoting effect of GRg1 in a sciatic crush injury model in rats. We found that GRg1 significantly increased SOD, CAT and GSH, decreased MDA, as well as promoted nerve regeneration after crush injury. In conclusion, the present study showed that GRg1 is capable of helping SCs recover from the oxidative insult induced by hydrogen peroxide, which might account, at least in part, for the beneficial effect of GRg1 on nerve regeneration.  相似文献   

8.
It has been shown that panaxydol (PND) can mimic the neurotrophic effect of nerve growth factor (NGF) normally secreted by Schwann cells (SC) and protect neurons against injury. To evaluate the effect of PND on hypoxia-induced SC death and expression and secretion of neurotrophic factors (NGF and brain derived neurotrophic factor (BDNF)), hypoxic SCs were cultured in vitro and then treated with PND (0-20 microM). The MTT (3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, immunocytochemistry, ELISA and RT-PCR were employed to examine the effects. We found that hypoxia resulted in a significant decrease in SCs viability (MTT: 64+/-4.7% of control group) and nearly a 3.3-fold increase of intracellular level of active caspase-3. PND (5-20 microM) treatment significantly rescued the SCs from hypoxia-induced injury (85+/-8.2%; 92+/-8.6%; 87+/-7.3%) and reduced caspase-3 activity with the maximal effect occurred at 10 microM (P<0.01), reducing to about 1.6-fold of control level. Furthermore, PND treatment also enhanced NGF and BDNF mRNA levels in hypoxic SCs and promoted protein expression and secretion. BDNF mRNA in hypoxic SCs was restored to about 90% of normal level and NGF mRNA was elevated to 1.4-fold of control after 10 microM PND treatment. These observations showed that PND protects primary cultured SCs against hypoxia-induced injury and enhances NTF-associated activities.  相似文献   

9.
Granulocyte-colony stimulating factor (G-CSF) is widely known to have a neuroprotective effect, but its effects on function and morphology in mechanical nerve injury are not well understood. The aim of this study was to confirm the time course of the functional changes and morphological effects of G-CSF in a rat model of nerve crush injury. Twelve-eight rats were divided into three group: sham-operated control group, G-CSF-treated group, and saline treated group. 2 weeks after the nerve crush injury, G-CSF was injected for 5 days. After 4 weeks, functional tests such as motor nerve conduction velocity (MNCV), mechanical and cold allodynia tests, and morphological studies were performed. G-CSF-treated rats had significantly improved nerve function including MNCV and mechanical and cold allodynia. In addition, G-CSF-treated rats had significantly higher the density of myelinated fibers than saline-treated rats. In conclusion, we found that 100 μg/kg administration of G-CSF promoted long-term functional recovery in a rat model of nerve crush injury.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs) in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/−) received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT) were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI), and motor nerve conduction velocity (MNCV) simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/− mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/− BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/− mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.  相似文献   

11.
目的:探讨新型材料poly(ethylene argininylaspartate diglyceride)(PEAD)结合肝素包裹神经生长因子组成的三元复合体比单纯运用NGF治疗大鼠坐骨神经损伤效果明显,为临床治疗外周神经损伤提供实验依据。方法:24只200g左右Wistar大鼠,分成生理盐水组,NGF组,NGF凝聚体三组,每组各8只,距梨状肌下缘远侧约1.5cm处运用静脉夹夹紧坐骨神经2min,采用无创细线(5/0)缝合肌肉和皮肤,并用碘伏进行消毒,NGF组每天沿坐骨切迹肌注80ngNGF,持续30天;NGF凝聚体组仅在造模时肌注复合体(内含2.4μg的NGF);生理盐水组给予等体积的生理盐水。术后每周运用脚步印迹法评价动物的行为学,并于30天后灌流、收集各组损伤侧坐骨神经,运用HE染色及投射电镜观察坐骨神经结构恢复情况,免疫荧光标记MBP,观察其蛋白的表达。结果:NGF组,NGF凝聚体组在行为学、病理结构及蛋白的表达远高于生理盐水组,并且NGF凝聚组的治疗效果优于NGF组。结论:新型凝聚体包载NGF具有明显的促进周围神经损伤后的修复与再生作用,能够在一定程度上提高单纯运用NGF治疗大鼠坐骨神经损伤的不足,达到更加理想和显著的促恢复效果。  相似文献   

12.
Tripartite motif containing 32 (TRIM32), a member of the tripartite motif (TRIM) family, plays an indispensable role in myoblast proliferation. It also regulates neuron and skeletal muscle stem cell differentiation. Although it is of great importance, we know little about the roles of TRIM32 during peripheral nervous system injury. Here, we examined the dynamic changes of TRIM32 in acute sciatic nerve crush (SNC) model. After crush, TRIM32 rapidly increased and reached the climax at 1 week but then gradually declined to the normal level at 4 weeks post-injury. Meanwhile, we observed similar changes of Oct-6. What is more, we found co-localization of TRIM32 with S100 and Oct-6 in 1-week-injured tissues using double immunofluorescent staining. In further vitro experiments, enhancive expression of TRIM32 was detected during the process of cyclic adenosine monophosphate (cAMP)-induced Schwann cell differentiation and nerve growth factor (NGF)-induced PC12 cell neurite outgrowth. More interestingly, specific si-TRIM32-transfected RSC96 cells exhibited obvious reduction in the ability of migration. Taken together, we inferred that upregulated TRIM32 was not only involved in the differentiation and migration of Schwann cells but the neurite elongation after SNC.  相似文献   

13.
Following peripheral nerve injury perineuronal satellite cell reaction in the corresponding spinal ganglion is observed. The mechanisms underlying the glial responses to axon injury remain unknown. In an immunocytochemical and morphometric study we investigated satellite cell and macrophage responses in the rat L4 and L5 dorsal root ganglia (DRG) during the seven days immediately after unilateral sciatic nerve crush or transection. Nerve lesion induced a significant increase of glial fibrillary acidic protein-immunoreactive (GFAP-IR) cells in the ipsilateral L4-L5 DRGs. The number of ED1-positive macrophages significantly increased as well. We found no significant differences between the increases provoked by the two types of nerve lesion, but the macrophage activation was detected earlier after nerve transection than after crush. No correlation was detected between satellite cells and macrophages reactions over the 7 day period we examined. These findings support the idea that intercellular neuron-glial diffusible signals play a major role in DRG glial cell response to peripheral nerve lesion.  相似文献   

14.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

15.
Abstract: The levels of neurotrophin mRNA in sensory ganglia, sciatic nerve, and skeletal muscle were measured in the streptozotocin-diabetic rat using northern blotting. Periods of diabetes of 4, 6, and 12 weeks significantly elevated brain-derived neurotrophic factor (BDNF) mRNA levels in soleus muscle compared with age-matched controls, the increase being highest at 6 weeks. At all time periods studied, the levels of nerve growth factor (NGF) mRNA in soleus muscle were decreased by 21–47%. Following 12 weeks of diabetes, BDNF mRNA levels were increased approximately two-to threefold in L4 and L5 dorsal root ganglia (DRG), and in sciatic nerve, NGF mRNA levels were raised 1.65-fold. Intensive insulin treatment of diabetic rats for the final 4 weeks of the 12-week period of diabetes reversed the up-regulation of BDNF mRNA in DRG and muscle and NGF mRNA in sciatic nerve. All diabetes-induced changes in neurotrophin mRNA were not paralleled by similar alterations in the levels of β-actin mRNA in muscle and nerve, or of GAP-43 mRNA in DRG and nerve. It is proposed that the up-regulation of neurotrophin mRNA is an endogenous protective and/or repair mechanism induced by insult and, as such, appears as an early marker of peripheral nerve and muscle damage in experimental diabetes.  相似文献   

16.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

17.
The distribution of brain-derived neurotrophic factor was examined in the rat mesencephalic trigeminal tract nucleus after transection and crush of the masseteric nerve. In the intact mesencephalic trigeminal tract nucleus, brain-derived neurotrophic factor was detected in small cells with fine processes. These cells and processes were occasionally located adjacent to tyrosine kinase B receptor-immunoreactive sensory neurons. The transection and crush of the masseteric nerve increased expression of brain-derived neurotrophic factor in the nucleus. The number and size of brain-derived neurotrophic factor-immunoreactive cells and processes were dramatically elevated by the nerve injury. As a result, the density of brain-derived neurotrophic factor-immunoreactive profiles in the mesencephalic trigeminal tract nucleus at 7 days after the injury was significantly higher compared with the intact nucleus. Double immunofluorescence method also revealed that brain-derived neurotrophic factor-immunoreactive cells were mostly immunoreactive for OX-42 but not glial fibrillary acidic protein. In addition, the retrograde tracing method demonstrated that brain-derived neurotrophic factor-immunoreactive cells and processes surrounded retrogradely labeled neurons which showed tyrosine kinase B receptor-immunoreactivity. These findings indicate that the nerve injury increases expression of brain-derived neurotrophic factor in microglia within the mesencephalic trigeminal tract nucleus. The glial neurotrophic factor may be associated with axonal regeneration of the injured primary proprioceptor in the trigeminal nervous system.  相似文献   

18.
Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2?weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2?weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve.  相似文献   

19.
Mitochondrial ATP synthase has multiple interdependent biological functions in neurons. Among them, ATP generation and regulation are the most important. The present study investigated whether the expression of mitochondrial ATP synthase correlates with symptoms of neuropathic pain in adult rats after axotomy, and whether intrathecal ATP administration is therapeutic in these neuropathic rats. Male Sprague–Dawley rats received left sciatic nerve transection (axotomy) and were randomly designated to a control (sham-operated) group, a neuropathic pain group (axotomy), a neuropathic pain and intrathecal sterile saline group, and a neuropathic pain and intrathecal ATP group. The thermal and mechanical sensitivity tests were performed at 1, 3, 5, and 7 days after axotomy. Left L4–L5 dorsal root ganglions (DRGs) were harvested to assess mitochondrial ATP synthase by immunoblotting and immunohistochemistry. After nerve injury, the expression of mitochondrial ATP synthase was decreased in protein extracts and was found mainly in C-fiber and A-δ fiber neurons of the DRGs. The decreased expression of mitochondrial ATP synthase and its subcellular localization were related to thermal and mechanical hyperalgesia. Administration of intrathecal ATP significantly attenuated thermal and mechanical hypersensitivity throughout the experimental period, which suggests its potential role in the treatment of neuropathic pain.  相似文献   

20.
We have previously shown that neurite outgrowth from 6-day chick embryo dorsal root ganglia (DRG) in vitro was stimulated when nerve growth factor (NGF) and pulsed magnetic fields (PMF) are used in combination. 392 DRGs were studied in a field excited by a commercial PMF generator. We have now analyzed an additional 416 DRGs exposed to very similar PMF's produced by an arbitrary wave from generator and power amplifier. We reproduced our previous findings that combination of NGF and bursts of asymmetric, 220 μs-wide, 4.0 mT-peak pulses induced significantly (p<0.05) greater outgrowth than NGF alone, that fields without NGF do not significantly alter outgrowth, and that, unlike NGF alone, 4.0 mT fields and NGF can induce asymmetric outgrowth. The asymmetry does not seem to have a preferred orientation with respect to the induced electric field. Analysis of the data for the entire 808 DRGs confirms these findings. Importantly, we find similar results for pulse bursts repeated at 15 or 25 Hz. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号