首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Our objective was to induce enucleation (IE) of activated mouse oocytes to yield cytoplasts capable of supporting development following nuclear transfer. Fluorescence microscopy for microtubules, microfilaments, and DNA was used to evaluate meiotic resumption after ethanol activation and the effect of subsequent transient treatments with 0.4 micro g/ml of demecolcine. Using oocytes from B6D2F1 (C57BL/6 x DBA/2) donors, the success of IE of chromatin into polar bodies (PBs) was dependent on the duration of demecolcine treatment and the time that such treatment was initiated after activation. Similarly, variations in demecolcine treatment altered the proportions of oocytes exhibiting a reversible compartmentalization of chromatin into PBs. Treatment for 15 min begun immediately after activation yielded an optimized IE rate of 21% (n = 80) when oocytes were evaluated after overnight recovery in culture. With this protocol, 30-50% of oocytes were routinely scored as compartmentalized when assessed 90 min postactivation. No oocytes could be scored as such following overnight recovery, with 66% of treated oocytes cleaving to the 2-cell stage (n = 80). Activated cytoplasts were prepared by mechanical removal of PBs from oocytes whose chromatin had undergone IE or compartmentalization. These cytoplasts were compared with mechanically enucleated, metaphase (M) II cytoplasts whose activation was delayed in nuclear transfer experiments using HM-1 embryonic stem cells. Using oocytes from either B6D2F1 or B6CBAF1 (C57BL/6 x CBA) donors, the in vitro development of cloned embryos using activated cytoplasts was consistently inferior to that observed using MII cytoplasts. Live offspring were derived from both oocyte strains using the latter, whereas a single living mouse was cloned from activated B6CBAF1 cytoplasts.  相似文献   

2.
Demecolcine-induced enucleation (IE) of mouse oocytes has been shown to improve development to term of cloned mice. In this study, we characterized the kinetics and morphological progression of bovine oocytes subjected to IE, and evaluated their ability to support embryo development to the blastocyst stage after nuclear transfer (NT). In vitro matured bovine oocytes were parthenogenetically activated and subsequently exposed to demecolcine at various times post-activation. Onset and duration of demecolcine treatment significantly altered activation and IE frequencies, which varied from 7.1% to 100% and 33.3% to 91.7%, respectively, at 5 hr post-activation. A significant decrease in IE frequencies was observed at 17 hr post-activation (3.4%-46.1%), possibly due to reincorporation of chromosomes into the oocyte after incomplete second polar body (PB) extrusion. Oocytes were reconstructed by NT before (treatment 1) or after (treatment 2) activation and demecolcine treatment, and cultured in vitro. Cleavage (48.1%-54.2%) and blastocyst rates (15.7%-19%) were equivalent for the two treatments, as well as the total cell number in NT blastocysts. Furthermore, most of the blastocysts were completely diploid (treatment 2) or heteroploid but with a majority of diploid nuclei (treatment 1). Our results demonstrate that the IE method can be successfully used to produce enucleated bovine cytoplasts that are competent to support development to the blastocyst stage after NT. This technically simple approach may provide a more efficient method to enhance the success rate of NT procedures. Further studies are needed to improve the in vitro development efficiency and to expand our understanding of the mechanism(s) involved in demecolcine-induced enucleation.  相似文献   

3.
Studies were designed to further explore the use of pharmacological agents to produce developmentally competent enucleated mouse oocytes for animal cloning by somatic cell nuclear transfer. Metaphase II oocytes from CF-1 and B6D2F1 strains were activated with ethanol and subsequently exposed to demecolcine at various times postactivation. Chromosome segregation, spindle dynamics, and polar body (PB) extrusion were monitored by fluorescence microscopy using DNA-, microtubule-, and microfilament-selective probes. Exposure to demecolcine did not affect rates of oocyte activation induced by ethanol but did disrupt the coordination of cytokinesis and karyokinesis, suppressing the extent and completion of spindle rotation and second PB extrusion in a strain-dependent manner. Moreover, strain- and treatment-specific variations in the rate of oocyte enucleation were also detected. In particular, CF1 oocytes were more efficiently enucleated relative to B6D2F1 oocytes, and demecolcine treatments initiated early after activation resulted in higher enucleation rates than when treatment was delayed. The observed strain differences are possibly caused by a combination of factors, such as the time course of meiotic cell-cycle progression after ethanol activation, the degree of spindle rotation, and the extent of second PB extrusion. These results suggest that developmentally competent cytoplasts can be produced by timely exposure of activated oocytes to agents that disrupt spindle microtubules. However, the utility of the demecolcine-induced enucleation protocol will require further investigation into factors linking karyokinesis to cytokinesis at the levels of cell-cycle control and oocyte cytoskeletal remodeling following artificial or natural means of egg activation.  相似文献   

4.
Early development of embryos produced by transfer of equine nuclei to bovine cytoplasts is superior to that of intraspecies equine nuclear transfer embryos. This may be related to differences in chromatin remodeling or efficiency of activation between the two oocyte types. The pattern of donor nucleus remodeling was examined in equine-equine and equine-bovine reconstructed oocytes. Chromosome condensation occurred in equine cytoplasts by 2 h but was not seen in bovine cytoplasts until 4 h. We investigated the effect of activation of equine-equine reconstructed oocytes at <30 min or at 2 h after reconstruction. Four activation treatments were evaluated at each time point: injection of sperm extract alone, or in combination with 6-dimethylaminopurine (6-DMAP), cytochalasin B, or 1% dimethylsulphoxide. There was no significant difference in normal cleavage rate or average nucleus number of embryos between equine oocytes activated <30 min or at 2 h after reconstruction. The combination of 6-DMAP with sperm extract significantly (P < 0.01) improved cleavage rate compared with the other three treatments. Activation with sperm extract and 6-DMAP 2 h after donor nucleus injection gave the highest cleavage (79%) and the highest cleavage with normal nuclei (40%). Sperm extract and 6-DMAP also effectively activated oocytes parthenogenetically, yielding 83% cleavage and 73% cleavage with normal nuclei. These results indicate that although nuclear remodeling occurs rapidly in equine cytoplasts, early activation does not improve embryonic development after reconstruction.  相似文献   

5.
To clone a pig from somatic cells, we first validated an electrical activation method for use on ovulated oocytes. We then evaluated delayed versus simultaneous activation (DA vs. SA) strategies, the use of 2 nuclear donor cells, and the use of cytoskeletal inhibitors during nuclear transfer. Using enucleated ovulated oocytes as cytoplasts for fetal fibroblast nuclei and transferring cloned embryos into a recipient within 2 h of activation, a 2-h delay between electrical fusion and activation yielded blastocysts more reliably and with a higher nuclear count than did SA. Comparable rates of development using DA were obtained following culture of embryos cloned from ovulated or in vitro-matured cytoplasts and fibroblast or cumulus nuclei. Treatment of cloned embryos with cytochalasin B (CB) postfusion and for 6 h after DA had no impact on blastocyst development as compared with CB treatment postfusion only. Inclusion of a microtubule inhibitor such as nocodozole with CB before and after DA improved nuclear retention and favored the formation of single pronuclei in experiments using a membrane dye to reliably monitor fusion. However, no improvement in blastocyst development was observed. Using fetal fibroblasts as nuclear donor cells, a live cloned piglet was produced in a pregnancy that was maintained by cotransfer of parthenogenetic embryos.  相似文献   

6.
Oocytes enucleated at the second metaphase stage (MII) are often used as recipient cytoplasts for nuclear transfer. The oocyte's nuclear material has been traditionally removed blindly by aspirating the first polar body (Pb1) along with a portion of the cytoplasm. However, the Pb1-guided enucleation method is unreliable because the position of the Pb1 is variable. A previous study showed that pretreatment of mouse oocytes with 3% (0.09 M) sucrose allowed visualization of the metaphase spindle and chromosomes under standard light microscopy and led to a 100% enucleation rate. The same sucrose treatment, however, did not produce the same effect in bovine oocytes. In this study, we increased the concentration of sucrose to 0.3-0.9 M in PBS containing 20% fetal bovine serum (SPF) and found that the majority of the treated bovine oocytes (75%-86%) formed a small transparent bud into the perivitelline space, as compared with the 0.1 M sucrose (6%) or the no sucrose (0%) control groups. Staining of DNA with Hoechst 33342 revealed that these projections coincided with the position of the metaphase chromosomes in 100% of sucrose-treated oocytes, whereas only 31% of oocytes showed alignment of the position of Pb1 with their nuclear materials. Furthermore, 95% of oocytes treated in 0.3 M SPF were successfully enucleated by removing a small amount of cytoplasm adjacent to the projection. This is a significantly higher enucleation rate than that obtained by conventional Pb1-guided enucleation, even when a larger amount of cytoplasm was removed. For nuclear transfer, the enucleated oocytes treated with sucrose did not differ from the control oocytes in rates of fusion, cleavage, or development to blastocysts, or in the average cell numbers in blastocysts. This study demonstrated that 0.3 M sucrose treatment of bovine oocytes facilitates the localization of metaphase chromosomes under normal light microscopy and hence increases enucleation efficiency without compromising the in vitro development potential of cloned embryos by nuclear transfer.  相似文献   

7.
Our and other previous studies have shown that telophase enucleation is an efficient method for preparing recipient cytoplasts in nuclear transfer. Conventional methods of somatic cell nuclear transfer either by electro-fusion or direct nucleus injection have very low efficiency in animal somatic cell cloning. To simplify the manipulation procedure and increase the efficiency of somatic cell nuclear transfer, this study was designed to study in vitro and in vivo development of Asian yellow goat cloned embryos reconstructed by direct whole cell intracytoplasmic injection (WCICI) into in vitro matured oocytes enucleated at telophase II stage. Our results demonstrated that the rates of cleavage and blastocyst development of embryos reconstructed by WCICI were slightly higher than in conventional subzonal injection (SUZI) group, but no statistic difference (P > 0.05) existed between these two methods. However, the percentage of successful embryonic reconstruction in WCICI group was significantly higher than that in SUZI group (P < 0.05). After embryo transfer at 4-cell stage, the foster in both groups gave birth to offspring. Therefore, the present study suggests that the telophase ooplasm could properly reprogram the genome of somatic cells, produce Asian yellow goat cloned embryos and viable kids, and whole cell intracytoplasmic injection is an efficient protocol for goat somatic cell nuclear transfer.  相似文献   

8.
In vitro-matured germinal vesicle oocytes are an interesting source of cytoplast recipients in both animal and human nuclear transfer (NT) experiments. We investigated two technical aspects that might improve the developmental potential of nuclear transfer mouse embryos constructed from in vitro-matured germinal vesicle oocytes. In a first step, the effect of two maturation media on the embryonic development of NT embryos originating from in vitro-matured oocytes was compared. Supplementation of the oocyte maturation medium with serum and gonadotrophins improved the developmental rate of NT embryos constructed from in vitro-matured oocytes, but it was still inferior to that obtained with in vivo-matured metaphase II (MII) oocytes. Second, we investigated the effect of serial pronuclear transfer from NT zygotes originating from both in vitro- and in vivo-matured oocytes to in vivo-fertilized zygotic cytoplasts. Blastocyst quality was evaluated by counting nuclei from trophectoderm and inner cell mass cells using a differential staining. Sequential pronuclear transfer significantly improved the blastocyst formation rate of NT embryos originating from in vitro-matured oocytes up to the rate obtained with in vivo-matured MII oocytes. We conclude that the developmental potential of NT embryos constructed from in vitro-matured oocytes can be optimized by serial pronuclear transfer to in vivo-produced zygotic cytoplasts.  相似文献   

9.
Cloned bovine embryos were produced at the blastocyst stage. Prior to enucleation, oocytes were freed from the zona pellucida. Fibroblasts isolated from the bovine fetus were used as nuclear donors. Pairs of fetal fibroblasts and enucleated oocytes (cytoplasts) were glued in phytohemagglutinin solution under a binocular microscope. The subsequent electrofusion of 39 fetal fibroblast-cytoplast pairs yielded 36 reconstructed one-cell embryos (92.3%). After culturing in synthetic oviduct fluid for 7.5 days, seven cloned embryos developed to the blastocyst stage (19.4%) and six blastocysts were considered fit for transplantation. The applied technique of bovine embryo growth allowed 31.1% zona-free oocytes parthenogenetically activated by to reach the blastocyst stage.  相似文献   

10.
In order to optimize each of the individual steps in the nuclear transfer procedure, we report alternative protocols useful for producing recipient cytoplasts and for improving the success rate of nuclear transfer embryos in cattle, rhesus monkey, and hamster. Vital labeling of maternal chromatin/spindle is accomplished by long wavelength fluorochromes Sybr14 and rhodamine labeled tubulin allowing constant monitoring and verification during enucleation. The use of Chinese hamster ovary (CHO) donor cells expressing the viral influenza hemagglutinin fusion protein (HA-300a+), to adhere and induce fusion between the donor cells and enucleated cow, rhesus and hamster oocytes was examined. Cell surface hemagglutinin was activated with trypsin prior to nuclear transfer and fusion was induced by a short incubation of a newly created nuclear transfer couplet at pH 5.2 at room temperature. Donor cell cytoplasm was dynamically labeled with CMFDA, or further transfected with the green fluorescence protein (GFP) gene, so that fusion could be directly monitored using live imaging. High rates of fusion were observed between CHO donor cells and hamster (100%), rhesus (100%), and cow recipient cytoplasts (81.6%). Live imaging during fusion revealed rapid intermixing of cytoplasmic components between a recipient and a donor cell. Prelabeled donor cytoplasmic components were uniformly distributed throughout the recipient cytoplast, within minutes of fusion, while the newly introduced nucleus remained at the periphery. The fusion process did not induce activation as evidenced by unchanged distribution and density of cortical granules in the recipient cytoplasts. After artificial activation, the nuclear transfer embryos created in this manner were capable of completing several embryonic cell divisions. These procedures hold promise for enhancing the efficiency of nuclear transfer in mammals of importance for biomedical research, agriculture, biotechnology, and preserving unique, rare, and endangered species.  相似文献   

11.
化学诱导法——卵母细胞去核新策略   总被引:2,自引:0,他引:2  
王强  顾玲  张涌 《生物工程学报》2003,19(6):763-766
哺乳动物体细胞克隆技术在过去的几年里取得了飞速发展 ,但是核移植的效率依然很低。于是人们不断的从各个方面进行探索 ,去核方法随之也成为其中的一个热点。但是传统的物理去核存在着技术要求高、耗费时间长、对细胞损伤大的缺点 ,作为思路转换的产物 ,一种新的卵母细胞去核技术———Deme诱导去核引起了各国科学家的广泛关注。文章着重介绍了Deme诱导去核辅助的核移植程序 ,Deme诱导去核成功率的影响因素 ,Deme诱导去核方法对卵母细胞及克隆胚胎的影响 ,并结合作者从事的研究对该方法目前存在的问题及某些环节可能的改进措施提出了看法。无论如何 ,Deme诱导去核方法的有效应用仍然需要作进一步的深入研究。  相似文献   

12.
When in vitro -matured oocytes were enucleated, aged and kept at 10°C before reconstitution, the in vitro development of nuclear transfer embryos to the blastocyst stage did not differ from that obtained with in vitro fertilization. This suggests that these recipient cytoplasts constitute a suitable environment for the development of the nuclear transplant. The aim of the present study was to investigate, at the biochemical level, the result of the preparation of recipient oocytes, including enucleation, ageing and cooling. For this purpose the phosphorylation profiles of four groups of in vitro -matured bovine oocytes (aged oocytes, aged-cooled oocytes, enucleated-aged oocytes and enucleated-aged-cooled oocytes (recipient cytoplasts)) were analyzed. These recipient cytoplasts exhibited a phosphorylation profile similar to that of activated oocytes. Maturation promoting factor (MPF) activity, which was high in young metaphase II oocytes, in aged oocytes, in enucleated-aged oocytes and in aged-cooled oocytes, dropped to the basal level in enucleated-aged-cooled oocytes (recipient cytoplasts), while mitogen-activated protein kinase (MAPK) activity remained elevated. The combination of enucleation, ageing and cooling following oocyte in vitro maturation resulted in an interphase-like stage cytoplasm having a phosphorylation profile and low MPF activity similar to activated oocytes, but exhibiting high MAPK activity.  相似文献   

13.
Ohi S  Hosaka K  Ohkawa M  Sato K 《Human cell》2001,14(4):317-322
We examined whether metaphase nuclei could be used as nuclear donors in nuclear transfer in mice. The reconstructed embryos were developed to fetuses in both the metaphase-nuclear transfer and the G1-nuclear transfer. We also performed enucleation of oocytes following nuclear injection (injection-enucleation method) using microinjection method with a piezo-driven micromanipulator in order to produce the cloned murine fetuses. We found that this method could shorten time for manipulation in comparison with the conventional method performing nuclear injection following enucleation of oocytes (enucleation-injection method). We produced successfully cloned fetuses by the injection-enucleation method. Furthermore, there was no difference of developmental efficiency in reconstructed embryos from between B6D2F1 and ddY strain as oocyte donor.  相似文献   

14.
Conventional methods of somatic cell nuclear transfer either by electrofusion or direct nucleus injection have very low efficiency in animal cloning, especially interspecies cloning. To increase the efficiency of interspecies somatic cell nuclear transfer, in the present study we introduced a method of whole cell intracytoplasmic injection (WCICI) combined with chemical enucleation into panda-rabbit nuclear transfer and assessed the effects of this method on the enucleation rate of rabbit oocytes and the in vitro development and spindle structures of giant panda-rabbit reconstructed embryos. Our results demonstrated that chemical enucleation can be used in rabbit oocytes and the optimal enucleation result can be obtained. When we compared the rates of cleavage and blastocyst formation of subzonal injection (SUZI) and WCICI using chemically enucleated rabbit oocytes as cytoplasm recipients, the rates in the WCICI group were higher than those in the SUZI group, but there was no statistically siginificant difference (p > 0.05) between the two methods. The microtubule structures of rabbit oocytes enucleated by chemicals and giant panda-rabbit embryos reconstructed by WCICI combined with chemical enucleation were normal. Therefore the present study suggests that WCICI combined with chemical enucleation can provide an efficient and less labor-intensive protocol of interspecies somatic cell nuclear transfer for producing giant panda cloned embryos.  相似文献   

15.
There are many factors affecting the efficiency of nuclear transfer technology. Some are evaluated here using our novel approach by enucleating oocytes at 20–22 hr after in vitro maturation (IVM), culturing the enucleated oocytes (cytoplasts) for 8–10 hr or 18–20 hr to gain activation competence and then conducting nuclear transfer. In the first experiment, we demonstrated that cumulus cell (CC) monolayer can support some cloned embryos to develop into morulae or blastocysts. Co-culture with CC and bovine oviduct epithelial cell (BOEC) monolayers resulted in no differences (P 0.05) in supporting the development of cloned embryos (Experiment 2). When in vitro matured oocytes were enucleated at 22 hr after IVM followed by nuclear transfer 18–20 hr later, cleavage and morula or blastocyst development of the cloned embryos were similar to those resulting from the enucleated oocytes which had been matured in vivo (Experiment 3). Frozen embryos as nuclear donor cells worked equally well as fresh embryos for cloning in embryo development which was superior to IVF embryos (Experiment 4). However, fresh embryos resulted in a higher proportion (P < 0.05) of blastomere recovery than did frozen or IVF ambryos. Finally, embryo transfer of cloned embryos from our procedure produced a viable calf, demonstrating the commercial value of this novel approach of the technology. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The effect of the stage of the cell cycle of donor cells and recipient cytoplasts on the timing of DNA replication and the developmental ability in vitro of bovine nuclear transfer embryos was examined. Embryos were reconstructed by fusing somatic cells with unactivated recipient cytoplasts or with recipient cytoplasts that were activated 2 h before fusion. Regardless of whether recipient cytoplasts were unactivated or activated, the embryos that were reconstructed from donor cells at the G0 phase initiated DNA synthesis at 6-9 h postfusion (hpf). The timing of DNA synthesis was similar to that of parthenogenetic embryos, and was earlier than that of the G0 cells in cell culture condition. Most embryos that were reconstructed from donor cells at the G1/S phase initiated DNA synthesis within 6 hpf. The developmental rate of embryos reconstructed by a combination of G1/S cells and activated cytoplasts was higher than the rates of embryos in the other combination of donor cells and recipient cytoplasts. The results suggest that the initial DNA synthesis of nuclear transfer embryos is affected by the state of the recipient oocytes, and that the timing of initiation of the DNA synthesis depends on the donor cell cycle. Our results also suggest that the cell cycles of somatic cells synchronized in the G1/S phase and activated cytoplasts of recipient oocytes are well coordinated after nuclear transfer, resulting in high developmental rates of nuclear transfer embryos to the blastocyst stage in vitro.  相似文献   

17.
Chemically assisted handmade enucleation of porcine oocytes   总被引:1,自引:0,他引:1  
The purpose of our work was to find an efficient and reliable chemically assisted procedure for enucleation of porcine oocytes connected to the handmade cloning (HMC) technique without the potentially harmful chromatin staining and ultraviolet (UV) irradiation for cytoplast selection. After 41-42 h in vitro maturation, porcine oocytes were incubated with 0.4 microg/mL demecolcine for 45 min. Subsequently, the cumulus cells were removed and zonae pellucidae were partially digested. Oocytes with extrusion cones or oocytes only with polar body (PB) were subjected to oriented bisection. Less than half of the cytoplasm with the extrusion cone or adjacent to the PB was removed with a microblade. The remaining putative cytoplasts, containing the major part of the cytoplasm, were used as recipients for reconstruction with porcine fetal fibroblasts as nuclear donors. The overall efficiency achieved with chemically assisted enucleation was higher compared to oriented bisection without demecolcine incubation (90 +/- 3% vs. 81 +/- 4%, respectively; mean +/- absolute deviation [AD]). Reconstructed and activated embryos were cultured in vitro for 7 days. Fusion, cleavage and blastocyst rates were 87 +/- 7%, 97 +/- 6%, and 28 +/- 9%, respectively. These rates are at least as good as those achieved with normal HMC (81 +/- 4%, 87 +/- 8%, and 21 +/- 9%, respectively). For traditional, micromanipulator-based cloning, fusion and blastocyst rates were similar (81 +/- 10% and 21 +/- 6%, respectively), but the cleavage rate was lower (69 +/- 9%). In conclusion, chemically assisted handmade enucleation seems to be a simpler and potentially superior alternative to more conventional methods used for somatic cell nuclear transfer in pigs.  相似文献   

18.
Therapeutic cloning or nuclear transfer for stem cells (NTSC) seeks to overcome immune rejection through the development of embryonic stem cells (ES cells) derived from cloned blastocysts. The successful derivation of a human embryonic stem cell (hESC) line from blastocysts generated by somatic cell nuclear transfer (SCNT) provides proof-of-principle for "therapeutic cloning," though immune matching of the differentiated NT-hES remains to be established. Here, in nonhuman primates (NHPs; rhesus and cynomologus macaques), the strategies used with human SCNT improve NHP-SCNT development significantly. Protocol improvements include the following: enucleation just prior to metaphase-II arrest; extrusion rather than extraction of the meiotic spindle-chromosome complex (SCC); nuclear transfer by electrofusion with simultaneous cytoplast activation; and sequential media. Embryo transfers (ET) of 135 SCNT-NHP into 25 staged surrogates did not result in convincing evidence of pregnancies after 30 days post-ET. These results demonstrate that (i) protocols optimized in humans generate preimplantation embryos in nonhuman primates; (ii) some, though perhaps not yet all, hurdles in deriving NT-nhpES cells from cloned macaque embryos (therapeutic cloning) have been overcome; (iii) reproductive cloning with SCNT-NHP embryos appears significantly less efficient than with fertilized embryos; (iv) therapeutic cloning with matured metaphase-II oocytes, aged oocytes, or "fertilization failures" might remain difficult since enucleation is optimally performed prior to metaphase-II arrest; and (v) challenges remain for producing reproductive successes since NT embryos appear inferior to fertilized ones due to spindle defects resulting from centrosome and motor deficiencies that produce aneuploid preimplantation embryos, among other anomalies including genomic imprinting, mitochondrial and cytoplasmic heterogeneities, cell cycle asynchronies, and improper nuclear reprogramming.  相似文献   

19.
Nuclear transfer (NT) technology is typically used for generating identical individuals, but it is also a powerful resource for understanding the cellular and molecular aspects of nuclear reprogramming. Most recently, the procedure has been used in humans for producing patient-specific embryonic stem cells. The successful application of NT in cats was demonstrated by the birth of domestic and non-domestic cloned kittens at a similar level of efficiency to that reported for other mammalian species. In cats, it has been demonstrated that either in vivo or in vitro matured oocytes can be used as donor cytoplasts. The length of in vitro oocyte maturation affects in vitro development of reconstructed embryos, and oocytes matured in vitro for shorter periods of time are the preferred source of donor cytoplasts. For NT, cat somatic cells can be synchronized into the G0/G1 phase of the cell cycle by using different methods of cell synchronization without affecting the frequency of in vitro development of cloned embryos. Also, embryo development to the blastocyst stage in vitro is not influenced by cell type, but the effect of cell type on the percentage of normal offspring produced requires evaluation. Inter-species NT has potential application for preserving endangered felids, as live offspring of male and female African wildcats (AWC, Felis silvestris lybica) have been born and pregnancies have been produced after transferring black-footed cat (Felis nigripes) cloned embryos into domestic cat (Felis silvestris catus) recipients. Also, successful in vitro embryo development to the blastocyst stage has been achieved after inter-generic NT of somatic cells of non-domestic felids into domestic cat oocytes, but no viable progeny have been obtained. Thus, while cat cytoplasm induces early nuclear remodeling of cell nuclei from a different genus, the high incidence of early embryo developmental arrest may be caused by abnormal nuclear reprogramming. Fetal resorption and abortions were frequently observed at various stages of pregnancy after transfer of AWC cloned embryos into domestic cat recipients. Abnormalities, such as abdominal organ exteriorization and respiratory failure and septicemia were the main causes of death in neonatal cloned kittens. Nonetheless, several live domestic and AWC cloned kittens have been born that are seemingly normal and healthy. It is important to continue evaluating these animals throughout their lives and to examine their capability for natural reproduction.  相似文献   

20.
The electrofusion method, used extensively in livestock cloning, cannot be used in mice, because it is believed that the mouse oocytes are more susceptible to detrimental effects of electrical stimulus than oocytes from other species. Reports on whether a delayed activation after electrofusion and a premature chromosome condensation (PCC) is essential for efficient cloning are inconclusive. To address these issues, effects of pulsing on activation and MPF activity of nonenucleated oocytes and effects of delayed activation and MG132 treatment on donor nuclear PCC and preimplantation development of embryos cloned by electrofusion or nuclear injection were compared between different cytoplast ages in mice and goats. The results indicated that the use of oocytes collected early after donor stimulation would make it possible to conduct somatic cell nuclear transfer in mice by electrofusion. Whether a delayed activation is essential was dependent upon the age, or rather, the level, of MPF activity of the cytoplasts at the time of electrofusion, as was the requirement for MG132 treatment. The competence for blastocyst formation of cloned embryos was highly correlated with the level of donor nuclear PCC in recipient cytoplasts. The nuclear injection technique was more adaptable to older cytoplast ages, and hence less dependent on drugs for inhibition of MPF inactivation, compared to electrofusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号