首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel anticancer drug ABT-737 is a Bcl-2 Homology 3 (BH3)-mimetic that induces apoptosis by inhibiting pro-survival Bcl-2 proteins. ABT-737 binds with equal affinity to Bcl-2, Bcl-xL and Bcl-w in vitro and is expected to overrule apoptosis resistance mediated by these Bcl-2 proteins in equal measure. We have profiled ABT-737 specificity for all six pro-survival Bcl-2 proteins, in p53 wild-type or p53-mutant human T-leukemic cells. Bcl-B was untargeted, like Bfl-1 and Mcl-1, in accord with their low affinity for ABT-737 in vitro. However, Bcl-2 proved a better ABT-737 target than Bcl-xL and Bcl-w. This was reflected in differential apoptosis-sensitivity to ABT-737 alone, or combined with etoposide. ABT-737 was not equally effective in displacing BH3-only proteins or Bax from Bcl-2, as compared with Bcl-xL or Bcl-w, offering an explanation for the differential ABT-737 sensitivity of tumor cells overexpressing these proteins. Inducible expression demonstrated that BH3-only proteins Noxa, but not Bim, Puma or truncated Bid could overrule ABT-737 resistance conferred by Bcl-B, Bfl-1 or Mcl-1. These data identify Bcl-B, Bfl-1 and Mcl-1, but also Bcl-xL and Bcl-w as potential mediators of ABT-737 resistance and indicate that target proteins can be differentially sensitive to BH3-mimetics, depending on the pro-apoptotic Bcl-2 proteins they are complexed with.  相似文献   

2.
Human melanoma cells are very resistant to treatment with chemotherapeutic agents, and melanoma shows poor response to chemotherapeutic therapy. We describe a strong synergistic proapoptotic effect of the Bcl-2 family inhibitor ABT-737 and the standard antimelanoma drugs, namely, dacarbazine and fotemustine, and the experimental agent, imiquimod. Experiments with human melanoma cells, keratinocytes, and embryonic fibroblasts showed that all three agents activated the mitochondrial apoptosis pathway. ABT-737 on its own was ineffective in melanoma cells unless Mcl-1 was experimentally downregulated. However, ABT-737 strongly enhanced the proapoptotic activity of the chemotherapeutic drugs. Whereas cell death induction by all three agents involved the activity of both BH3-only proteins, Bim and Noxa, the combination with ABT-737 overcame the requirement for Bim. However, the synergism between ABT-737 and imiquimod or dacarbazine required endogenous Noxa, as demonstrated by experiments with Noxa-specific RNAi. Surprisingly, although Bim was activated, it was unable to replace Noxa. Studies of mitochondrial cytochrome c release using BH3 peptides confirmed that a main effect of dacarbazine, fotemustine, and imiquimod was to neutralize Mcl-1, thereby sensitizing mitochondria to the inhibition of other Bcl-2 family members through ABT-737. ABT-737 is thus a promising agent for combination therapy for human melanoma. Importantly, the efficacy of this therapy depends on endogenous Noxa, and the ability of chemotherapeutic drugs to activate Noxa may be a valuable predictor of their synergism with Bcl-2-targeting drugs.  相似文献   

3.
The PI3K/mammalian Target of Rapamycin (mTOR) pathway is often aberrantly activated in rhabdomyosarcoma (RMS) and represents a promising therapeutic target. Recent evaluation of AZD8055, an ATP-competitive mTOR inhibitor, by the Preclinical Pediatric Testing Program showed in vivo antitumor activity against childhood solid tumors, including RMS. Therefore, in the present study, we searched for AZD8055-based combination therapies. Here, we identify a new synergistic lethality of AZD8055 together with ABT-737, a BH3 mimetic that antagonizes Bcl-2, Bcl-xL, and Bcl-w but not Mcl-1. AZD8055 and ABT-737 cooperate to induce apoptosis in alveolar and embryonal RMS cells in a highly synergistic fashion (combination index < 0.2). Synergistic induction of apoptosis by AZD8055 and ABT-737 is confirmed on the molecular level, as AZD8055 and ABT-737 cooperate to trigger loss of mitochondrial membrane potential, activation of caspases, and caspase-dependent apoptosis that is blocked by the pan-caspase inhibitor Z-VAD-fmk. Similar to AZD8055, the PI3K/mTOR inhibitor NVP-BEZ235, the PI3K inhibitor NVP-BKM120 and Akt inhibitor synergize with ABT-737 to trigger apoptosis, whereas no cooperativity is found for the mTOR complex 1 inhibitor RAD001. Interestingly, molecular studies reveal a correlation between the ability of different PI3K/mTOR inhibitors to potentiate ABT-737-induced apoptosis and to suppress Mcl-1 protein levels. Importantly, knockdown of Mcl-1 increases ABT-737-induced apoptosis similar to AZD8055/ABT-737 cotreatment. This indicates that AZD8055-mediated suppression of Mcl-1 protein plays an important role in the synergistic drug interaction. By identifying a novel synergistic interaction of AZD8055 and ABT-737, our findings have important implications for the development of molecular targeted therapies for RMS.  相似文献   

4.
Development of drugs targeting Bcl-2 relatives and caspases, for treating diseases including cancer and inflammatory disorders, often involves measuring interactions with recombinant target molecules, and/or monitoring cancer cell killing in vitro. Here, we present yeast-based methods for evaluating drug-mediated inhibition of Bcl-2 relatives or caspases. Active Bax and caspases kill Saccharomyces cerevisiae, and pro-survival Bcl-2 proteins can inhibit Bax-induced yeast death. By measuring the growth or adenosine triphosphate content of transformants co-expressing Bax with pro-survival Bcl-2 relatives, we found that the Bcl-2 antagonist drugs ABT-737 or ABT-263 abolished Bcl-2 or Bcl-xL function and reduced Bcl-w activity, but failed to inhibit Mcl-1, A1 or the poxvirus orthologs DPV022 and SPPV14. Using this technique, we also demonstrated that adenoviral E1B19K was resistant to these agents. The caspase inhibitor Q-VD-OPh suppressed yeast death induced by caspases 1 and 3. Yeast engineered to express human apoptotic regulators enable simple, automatable assessment of the activity and specificity of candidate drugs targeting Bcl-2 relatives or caspases.  相似文献   

5.
As single agents, ABT-263 and ABT-737 (ABT), molecular antagonists of the Bcl-2 family, bind tightly to Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1, and induce apoptosis only in limited cell types. The compound 2-deoxyglucose (2DG), in contrast, partially blocks glycolysis, slowing cell growth but rarely causing cell death. Injected into an animal, 2DG accumulates predominantly in tumors but does not harm other tissues. However, when cells that were highly resistant to ABT were pre-treated with 2DG for 3 hours, ABT became a potent inducer of apoptosis, rapidly releasing cytochrome c from the mitochondria and activating caspases at submicromolar concentrations in a Bak/Bax-dependent manner. Bak is normally sequestered in complexes with Mcl-1 and Bcl-xL. 2DG primes cells by interfering with Bak-Mcl-1 association, making it easier for ABT to dissociate Bak from Bcl-xL, freeing Bak to induce apoptosis. A highly active glucose transporter and Bid, as an agent of the mitochondrial apoptotic signal amplification loop, are necessary for efficient apoptosis induction in this system. This combination treatment of cancer-bearing mice was very effective against tumor xenograft from hormone-independent highly metastasized chemo-resistant human prostate cancer cells, suggesting that the combination treatment may provide a safe and effective alternative to genotoxin-based cancer therapies.  相似文献   

6.
Anti-apoptotic Bcl-2 family proteins, which inhibit the mitochondrial pathway of apoptosis, are involved in the survival of various hematopoietic lineages and are often dysregulated in hematopoietic malignancies. However, their involvement in the megakaryocytic lineage is not well understood. In the present paper, we describe the crucial anti-apoptotic role of Mcl-1 and Bcl-xL in this lineage at multistages. The megakaryocytic lineage-specific deletion of both, in sharp contrast to only one of them, caused apoptotic loss of mature megakaryocytes in the fetal liver and systemic hemorrhage, leading to embryonic lethality. ABT-737, a Bcl-xL/Bcl-2/Bcl-w inhibitor, only caused thrombocytopenia in adult wild-type mice, but further induced massive mature megakaryocyte apoptosis in the Mcl-1 knockout mice, leading to severe hemorrhagic anemia. All these phenotypes were fully restored if Bak and Bax, downstream apoptosis executioners, were also deficient. In-vitro study revealed that the Jak pathway maintained Mcl-1 and Bcl-xL expression levels, preventing megakaryoblastic cell apoptosis. Similarly, both were involved in reticulated platelet survival, whereas platelet survival was dependent on Bcl-xL due to rapid proteasomal degradation of Mcl-1. In conclusion, Mcl-1 and Bcl-xL regulate the survival of the megakaryocytic lineage, which is critically important for preventing lethal or severe hemorrhage in both developing and adult mice.  相似文献   

7.
8.
The BH3-only proteins of the Bcl-2 family are known to mediate mitochondrial dysfunction during apoptosis. However, the identity of the critical BH3-only proteins and the mechanism of their action following treatment by diverse apoptotic stimuli remain to be fully resolved. We therefore used RNAi to screen the entire Bcl-2 family for their involvement in three major apoptotic pathways in HeLa cells. We found that Bcl-xL and Mcl-1 are major inhibitors of apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL), endoplasmic reticulum (ER) stress, and proteasome inhibition. Among the 10 BH3-only proteins, Bid and Noxa were found to be critically involved in TRAIL-induced apoptosis, in which Noxa participates by constitutively binding to Mcl-1. Bim and Noxa were found to be necessary for ER stress-induced apoptosis, in which Noxa assisted Bim function by sequestering Mcl-1 and binding to Bcl-xL. As a critical BH3-only protein, Noxa was strongly upregulated and became associated with both Mcl-1 and Bcl-xL during apoptosis induced by proteasome inhibition. In addition, we found that Noxa became 'Mcl-1 free' following treatment by ER stress and proteasome inhibition, but not after TRAIL treatment. These results defined the critical Bcl-2 network during apoptosis and suggested that Noxa participated in triggering mitochondrial dysfunction in multiple apoptotic pathways through distinct mechanisms.  相似文献   

9.
Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.  相似文献   

10.
ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins, holds great promise to complement current cancer therapies. However many types of solid cancer cells are resistant to ABT-737. One practical approach to improve its therapeutic efficacy is to combine with the agents that can overcome such resistance to restore the sensitivity. In the present study, a second-generation selenium compound methylseleninic acid (MSeA) synergistically sensitized MDA-MB-231 human breast cancer cells, HT-29 human colon cancer cells and DU145 human prostate cancer cells to apoptosis induction by ABT-737, as evidenced by greater than additive enhancement of Annexin V/FITC positive (apoptotic) cells and activation of multiple caspases and PARP cleavage. Mechanistic investigation demonstrated that MSeA significantly decreased basal Mcl-1 expression and ABT-737-induced Mcl-1 expression. Knocking down of Mcl-1 with RNAi approach supported the functional significance of this molecular target. More importantly, we identified inactivation of Bad by phosphorylation on ser-136 and ser-112 as a novel mechanism involved in ABT-737 resistance, which can be overcome by combining with MSeA. In addition, we found that expression of Bax was required for the efficient execution of synergistic sensitization. Our findings, for the first time, provide a strong mechanistic rationale for developing MSeA as a novel sensitizing agent of ABT-737.  相似文献   

11.
Ovarian cancer is the leading cause of death from gynecological cancer. The anti-apoptotic protein Bcl-xL is frequently overexpressed in ovarian carcinoma which correlates with chemotherapy resistance. It has been demonstrated that Bcl-xL cooperates with another anti-apoptotic protein, Mcl-1, to protect ovarian cancer cells against apoptosis, and that their concomitant inhibition induces massive cell death. Here, we examined the interest of ABT-737, a potent BH3-mimetic molecule targeting Bcl-xL, both alone and in combination with Mcl-1 modulators, in ovarian cancer cell lines. As a single agent, ABT-737 was ineffective at promoting cell death in the four cell lines we tested in vitro. However, the specific inhibition of Mcl-1 by siRNA dramatically increased the sensitivity of chemoresistant cells to ABT-737. Platinum compounds also sensitize to ABT-737 by dose-dependently decreasing Mcl-1 expression or by increasing the expression of pro-apoptotic BH3-only proteins Noxa and, to a lower extent, Bim. Furthermore, we demonstrated that Noxa accumulation was involved in apoptosis occurring in response to the combination of ABT-737 and platinum compounds, since cells were protected from apoptosis by its silencing. Moreover, the combination was also highly cytotoxic ex vivo in sliced SKOV3 tumor nodes. However we observed in these slices a strong basal expression of Noxa and apoptotic cell death in response to ABT-737 alone. Therefore, we have revealed that the modulation of the Mcl-1/Noxa axis by platinum compounds results in a strong sensitization of chemoresistant ovarian carcinoma cells to ABT-737, which could constitute a promising therapeutic in these cancers.  相似文献   

12.
Previous studies have suggested that the BH3 domain of the proapoptotic Bcl-2 family member Noxa only interacts with the anti-apoptotic proteins Mcl-1 and A1 but not Bcl-2. In view of the similarity of the BH3 binding domains of these anti-apoptotic proteins as well as recent evidence that studies of isolated BH3 domains can potentially underestimate the binding between full-length Bcl-2 family members, we examined the interaction of full-length human Noxa with anti-apoptotic human Bcl-2 family members. Surface plasmon resonance using bacterially expressed proteins demonstrated that Noxa binds with mean dissociation constants (K(D)) of 3.4 nm for Mcl-1, 70 nm for Bcl-x(L), and 250 nm for wild type human Bcl-2, demonstrating selectivity but not absolute specificity of Noxa for Mcl-1. Further analysis showed that the Noxa/Bcl-2 interaction reflected binding between the Noxa BH3 domain and the Bcl-2 BH3 binding groove. Analysis of proteins expressed in vivo demonstrated that Noxa and Bcl-2 can be pulled down together from a variety of cells. Moreover, when compared with wild type Bcl-2, certain lymphoma-derived Bcl-2 mutants bound Noxa up to 20-fold more tightly in vitro, pulled down more Noxa from cells, and protected cells against killing by transfected Noxa to a greater extent. When killing by bortezomib (an agent whose cytotoxicity in Jurkat T-cell leukemia cells is dependent on Noxa) was examined, apoptosis was enhanced by the Bcl-2/Bcl-x(L) antagonist ABT-737 or by Bcl-2 down-regulation and diminished by Bcl-2 overexpression. Collectively, these observations not only establish the ability of Noxa and Bcl-2 to interact but also identify Bcl-2 overexpression as a potential mechanism of bortezomib resistance.  相似文献   

13.
Bcl-2 family proteins act as essential regulators and mediators of intrinsic apoptosis. Several lines of evidence suggest that the anti-apoptotic members of the family, including Bcl-2, Bcl-xL and Mcl-1, exhibit functional redundancy. However, the current evidence is largely indirect, and based mainly on pharmacological data using small-molecule inhibitors. In order to study compensation and redundancy of anti-apoptotic Bcl-2 proteins at the molecular level, we used a combined knockdown/overexpression strategy to essentially replace the function of one member with another. The results show that HeLa cells are strictly dependent on Mcl-1 for survival and correspondingly refractory to the Bcl-2/Bcl-xL inhibitor ABT-263, and remain resistant to ABT-263 in the context of Bcl-xL overexpression because endogenous Mcl-1 continues to provide the primary guardian role. However, if Mcl-1 is knocked down in the context of Bcl-xL overexpression, the cells become Bcl-xL-dependent and sensitive to ABT-263. We also show that Bcl-xL compensates for loss of Mcl-1 by sequestration of two key pro-apoptotic Bcl-2 family members, Bak and Bim, normally bound to Mcl-1, and that Bim is essential for cell death induced by Mcl-1 knockdown. To our knowledge, this is the first example where cell death induced by loss of Mcl-1 was rescued by the silencing of a single BH3-only Bcl-2 family member. In colon carcinoma cell lines, Bcl-xL and Mcl-1 also play compensatory roles, and Mcl-1 knockdown sensitizes cells to ABT-263. The results, obtained employing a novel strategy of combining knockdown and overexpression, provide unique molecular insight into the mechanisms of compensation by pro-survival Bcl-2 family proteins.  相似文献   

14.
Treatment with the Bcl-2/Bcl-XL inhibitor ABT-737 is a promising novel strategy to therapeutically induce apoptotic cell death in malignant tumors such as glioblastomas. Although many studies have demonstrated that ABT-737 acts synergistically with chemotherapeutic drugs, the possibility of a combined treatment with ionizing radiation (IR) and ABT-737 has not yet been thoroughly investigated. Similarly, the relationship between p53 function and the pro-apoptotic effects of ABT-737 are still obscure. Here, we demonstrate that IR and ABT-737 synergistically induce apoptosis in glioblastoma cells. The sensitivity to ABT-737-mediated cell death is significantly increased by the IR-dependent accumulation of cells in the G2/M cell cycle phase. Wild type p53 function inhibits the efficacy of a combined IR and ABT-737 treatment via a p21-dependent G1 cell cycle arrest. Moreover, mutant as well as wild type p53 counteract the pro-apoptotic activity of ABT-737 by maintaining the expression levels of the Mcl-1 protein. Thus, p53 regulates the sensitivity to ABT-737 of glioblastoma cells. Our results warrant a further evaluation of a novel combination therapy using IR and ABT-737. The efficacy of such a therapy could be substantially enhanced by Mcl-1-lowering strategies.  相似文献   

15.
The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma’s well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.  相似文献   

16.
An intrinsic pathway of apoptosis is regulated by the B-cell lymphoma-2 (Bcl-2) family proteins. We previously reported that a fine rheostatic balance between the anti- and pro-apoptotic multidomain Bcl-2 family proteins controls hepatocyte apoptosis in the healthy liver. The Bcl-2 homology domain 3 (BH3)-only proteins set this rheostatic balance toward apoptosis upon activation in the diseased liver. However, their involvement in healthy Bcl-2 rheostasis remains unknown. In the present study, we focused on two BH3-only proteins, Bim and Bid, and we clarified the Bcl-2 network that governs hepatocyte life and death in the healthy liver. We generated hepatocyte-specific Bcl-xL- or Mcl-1-knock-out mice, with or without disrupting Bim and/or Bid, and we examined hepatocyte apoptosis under physiological conditions. We also examined the effect of both Bid and Bim disruption on the hepatocyte apoptosis caused by the inhibition of Bcl-xL and Mcl-1. Spontaneous hepatocyte apoptosis in Bcl-xL- or Mcl-1-knock-out mice was significantly ameliorated by Bim deletion. The disruption of both Bim and Bid completely prevented hepatocyte apoptosis in Bcl-xL-knock-out mice and weakened massive hepatocyte apoptosis via the additional in vivo knockdown of mcl-1 in these mice. Finally, the hepatocyte apoptosis caused by ABT-737, which is a Bcl-xL/Bcl-2/Bcl-w inhibitor, was completely prevented in Bim/Bid double knock-out mice. The BH3-only proteins Bim and Bid are functionally active but are restrained by the anti-apoptotic Bcl-2 family proteins under physiological conditions. Hepatocyte integrity is maintained by the dynamic and well orchestrated Bcl-2 network in the healthy liver.  相似文献   

17.
18.
It is still unclear whether the BH3-only protein Puma (p53 up-regulated modulator of apoptosis) can prime cells to death and render antiapoptotic BH3-binding Bcl-2 homologues necessary for survival through its ability to directly interact with proapoptotic Bax and activate it. In this study, we provide further evidence, using cell-free assays, that the BH3 domain of Puma binds Bax at an activation site that comprises the first helix of Bax. We also show that, in yeast, Puma interacts with Bax and triggers its killing activity when Bcl-2 homologues are absent but not when Bcl-xL is expressed. Finally, endogenous Puma is involved in the apoptotic response of human colorectal cancer cells to the Bcl-2/Bcl-xL inhibitor ABT-737, even in conditions where the expression of Mcl-1 is down-regulated. Thus, Puma is competent to trigger Bax activity by itself, thereby promoting cellular dependence on prosurvival Bcl-2 family members.  相似文献   

19.
As a model for defining the role of lysosomal cathepsins in apoptosis, we characterized the action of the lysosomotropic agent LeuLeuOMe using distinct cellular models. LeuLeuOMe induces lysosomal membrane permeabilization, resulting in release of lysosomal cathepsins that cleave the proapoptotic Bcl-2 family member Bid and degrade the antiapoptotic member Bcl-2, Bcl-xL, or Mcl-1. The papain-like cysteine protease inhibitor E-64d largely prevented apoptosis, Bid cleavage, and Bcl-2/Bcl-xL/Mcl-1 degradation. The pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone failed to prevent Bid cleavage and degradation of anti-apoptotic Bcl-2 homologues but substantially decreased cell death, suggesting that cathepsin-mediated apoptosis in these cellular models mostly follows a caspase-dependent pathway. Moreover, in vitro experiments showed that one or more of the cysteine cathepsins B, L, S, K, and H could cleave Bcl-2, Bcl-xL, Mcl-1, Bak, and BimEL, whereas no Bax cleavage was observed. On the basis of inhibitor studies, we demonstrate that lysosomal disruption triggered by LeuLeuOMe occurs before mitochondrial damage. We propose that degradation of anti-apoptotic Bcl-2 family members by lysosomal cathepsins synergizes with cathepsin-mediated activation of Bid to trigger a mitochondrial pathway to apoptosis. Moreover, XIAP (X-chromosome-linked inhibitor of apoptosis) was also found to be a target of cysteine cathepsins, suggesting that cathepsins can mediate caspase-dependent apoptosis also downstream of mitochondria.  相似文献   

20.
Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号