首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Since the discovery more than 30 years ago of human immunodeficiency virus (HIV) as the causative agent of the deadly disease, acquired immune deficiency disease (AIDS), there have been no efficient vaccines against the virus. For the infection of the virus, the HIV surface glycoprotein gp120 first recognizes the CD4 receptor on the target helper T-cell, which initiates HIV fusion with the target cell and, if unchecked, leads to destruction of the patient's immune system. Despite the difficulty of developing appropriate immune responses in HIV-infected individuals, patient sera often contain antibodies that have broad neutralization activity, indicating the possibility of immunological treatment and prevention. Recently, through extensive structural studies of neutralizing antibodies of HIV in complex with gp120, the critical mechanisms of broad neutralization against HIV have been elucidated. Based on these discoveries, the structure-aided designs of antibodies and novel scaffolds were performed to create extremely potent neutralizing antibodies against HIV. These new discoveries and advances shed light on the road to development of efficient immunological therapies against AIDS.  相似文献   

2.
The aim of this study was to analyze the role of humoral immunity in early human immunodeficiency virus (HIV) infection. As neutralizing activities in HIV-positive sera are rarely detectable earlier than 9 to 12 months after infection using primary lymphocytes as target cells in neutralization assays, humoral immunity is generally thought not to contribute significantly to early virus control in the patients. Besides lymphocytes, cells of the monocyte/macrophage lineage are known to be important target cells for HIV in vivo during the establishment of the infection. Therefore, we studied the neutralization of early primary HIV isolates by autologous serum samples using primary macrophages as target cells in the neutralization assays. We analyzed neutralizing activities against the autologous HIV-1 isolates in 10 patients' sera taken shortly after seroconversion, both on primary macrophages and, for comparison, on lymphocytes. Viruses were isolated and expanded in primary mixed cultures containing macrophages and lymphocytes in order to avoid selection for one particular cell type. All viruses replicated to different degrees in macrophages and lymphocytes; nine had a nonsyncytium-inducing phenotype, and one was syncytium inducing. The detection of neutralizing antibodies in acute primary HIV infection depended on the target cells used. Confirming previous studies, we did not find neutralizing activities on lymphocytes at this early time point. In contrast, neutralizing activities were detectable in the same sera if primary macrophages were used as target cells. Differences in neutralizing activities on macrophages and lymphocytes were not due to different virus variants being present in the different cell systems, as gp120 sequences derived from both cell types were homogeneous. Neutralization activities on macrophages did not correlate with the amount of beta-chemokines in the sera. As affinity-purified immunoglobulin G preparations from an early patient serum also exhibited neutralization of the autologous virus isolate on primary macrophages, but not on lymphocytes, neutralization is very likely due to antibodies against viral epitopes necessary for infection of macrophages but not for infection of lymphocytes. Our data suggest that, along with cell-mediated immunity, humoral immunity may contribute to the reduction of primary viremia in the patient. This was further supported by a certain association between neutralizing antibody titers on macrophages and viral load in the patients.  相似文献   

3.
The persistence of human immunodeficiency virus type 1 (HIV-1) infection in the presence of robust host immunity has been associated in part with variation in viral envelope proteins leading to antigenic variation and escape from neutralizing antibodies. Previous studies of natural neutralization escape mutants have predominantly focused on gp120 and gp41 ectodomain sequence variations that alter antibody binding via changes in conformation or glycosylation pattern of the Env, likely due to the immune pressure exerted on the exposed ectodomain component of the glycoprotein. Here, we show for the first time a novel mechanism by which point mutations in the intracytoplasmic tail of the transmembrane component (gp41) of envelope can render the virus resistant to neutralization by monoclonal antibodies and broadly neutralizing polyclonal serum antibodies. Point mutations in a highly conserved structural motif within the intracytoplasmic tail resulted in decreased binding of neutralizing antibodies to the Env ectodomain, evidently due to allosteric changes both in the gp41 ectodomain and in gp120. While receptor binding and infectivity of the mutant virus remained unaltered, the changes in Env antigenicity were associated with an increase in neutralization resistance of the mutant virus. These studies demonstrate the structurally integrated nature of gp120 and gp41 and underscore a previously unrecognized potentially critical role for even minor sequence variation of the intracytoplasmic tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.  相似文献   

4.
In this study, we have investigated the effect of specific mutations in human immunodeficiency virus type 1 (HIV-1) envelope (Env) on antibody production in an effort to improve humoral immune responses to this glycoprotein by DNA vaccination. Mice were injected with plasmid expression vectors encoding HIV Env with modifications in regions that might affect this response. Elimination of conserved glycosylation sites did not substantially enhance humoral or cytotoxic-T-lymphocyte (CTL) immunity. In contrast, a modified gp140 with different COOH-terminal mutations intended to mimic a fusion intermediate and stabilize trimer formation enhanced humoral immunity without reducing the efficacy of the CTL response. This mutant, with deletions in the cleavage site, fusogenic domain, and spacing of heptad repeats 1 and 2, retained native antigenic conformational determinants as defined by binding to known monoclonal antibodies or CD4, oligomer formation, and virus neutralization in vitro. Importantly, this modified Env, gp140 Delta CFI, stimulated the antibody response to native gp160 while it retained its ability to induce a CTL response, a desirable feature for an AIDS vaccine.  相似文献   

5.
During human immunodeficiency virus type 1 (HIV-1) infection, patients develop various levels of neutralizing antibody (NAb) responses. In some cases, patient sera can potently neutralize diverse strains of HIV-1, but the antibody specificities that mediate this broad neutralization are not known, and their elucidation remains a formidable challenge. Due to variable and nonneutralizing determinants on the exterior envelope glycoprotein (Env), nonnative Env protein released from cells, and the glycan shielding that assembles in the context of the quaternary structure of the functional spike, HIV-1 Env elicits a myriad of binding antibodies. However, few of these antibodies can neutralize circulating viruses. We present a systematic analysis of the NAb specificities of a panel of HIV-1-positive sera, using methodologies that identify both conformational and continuous neutralization determinants on the HIV-1 Env protein. Characterization of sera included selective adsorption with native gp120 and specific point mutant variants, chimeric virus analysis, and peptide inhibition of viral neutralization. The gp120 protein was the major neutralizing determinant for most sera, although not all neutralization activity against all viruses could be identified. In some broadly neutralizing sera, the gp120-directed neutralization mapped to the CD4 binding region of gp120. In addition, we found evidence that regions of the gp120 coreceptor binding site may also be a target of neutralizing activity. Sera displaying limited neutralization breadth were mapped to the immunogenic V3 region of gp120. In a subset of sera, we also identified NAbs directed against the conserved, membrane-proximal external region of gp41. These data allow a more detailed understanding of the humoral responses to the HIV-1 Env protein and provide insights regarding the most relevant targets for HIV-1 vaccine design.  相似文献   

6.
7.
Despite months of mucosal virus exposure, the majority of breastfed infants born to HIV-infected mothers do not become infected, raising the possibility that immune factors in milk inhibit mucosal transmission of HIV. HIV Envelope (Env)-specific antibodies are present in the milk of HIV-infected mothers, but little is known about their virus-specific functions. In this study, HIV Env-specific antibody binding, autologous and heterologous virus neutralization, and antibody-dependent cell cytotoxicity (ADCC) responses were measured in the milk and plasma of 41 HIV-infected lactating women. Although IgA is the predominant antibody isotype in milk, HIV Env-specific IgG responses were higher in magnitude than HIV Env-specific IgA responses in milk. The concentrations of anti-HIV gp120 IgG in milk and plasma were directly correlated (r = 0.75; P < 0.0001), yet the response in milk was 2 logarithm units lower than in plasma. Similarly, heterologous virus neutralization (r = 0.39; P = 0.010) and ADCC activity (r = 0.64; P < 0.0001) in milk were directly correlated with that in the systemic compartment but were 2 log units lower in magnitude. Autologous neutralization was rarely detected in milk. Milk heterologous virus neutralization titers correlated with HIV gp120 Env-binding IgG responses but not with IgA responses (r = 0.71 and P < 0.0001, and r = 0.17 and P = 0.30). Moreover, IgGs purified from milk and plasma had equal neutralizing potencies against a tier 1 virus (r = 0.65; P < 0.0001), whereas only 1 out of 35 tested non-IgG milk fractions had detectable neutralization. These results suggest that plasma-derived IgG antibodies mediate the majority of the low-level HIV neutralization and ADCC activity in breast milk.  相似文献   

8.
We monitored the primary humoral response to human immunodeficiency virus type 1 infection and showed that, in addition to antibodies to p24 and gp41, antigens which form the basis of most diagnostic assays, the response included a significant antibody response directed to the gp120 region of the infecting viral quasispecies. When tested in a recombinant virus neutralization assay, these antibodies were capable of inhibiting viral growth. We found the primary viral quasispecies to solely utilize the CCR-5 chemokine receptor; however, recombinant viruses differed in their cytopathology and in their sensitivity to β-chemokine inhibition of viral growth. Sequence analysis of the gp120 open reading frames showed that amino acid changes in the C1 (D→G at position 62) and C4 (V→A at position 430) regions accounted for the phenotypic differences. These data demonstrate that early in infection, polymorphism exists in envelope glycoprotein coreceptor interactions and imply that therapeutic strategies targeted at this step in the viral life cycle may lead to rapid resistance.  相似文献   

9.

Background

There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated.

Methods

The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets.

Results

Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization.

Conclusions

The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.  相似文献   

10.
In recent years, high throughput discovery of human recombinant monoclonal antibodies (mAbs) has been applied to greatly advance our understanding of the specificity, and functional activity of antibodies against HIV. Thousands of antibodies have been generated and screened in functional neutralization assays, and antibodies associated with cross-strain neutralization and passive protection in primates, have been identified. To facilitate this type of discovery, a high throughput-screening tool is needed to accurately classify mAbs, and their antigen targets. In this study, we analyzed and evaluated a prototype microarray chip comprised of the HIV-1 recombinant proteins gp140, gp120, gp41, and several membrane proximal external region peptides. The protein microarray analysis of 11 HIV-1 envelope-specific mAbs revealed diverse binding affinities and specificities across clades. Half maximal effective concentrations, generated by our chip analysis, correlated significantly (P<0.0001) with concentrations from ELISA binding measurements. Polyclonal immune responses in plasma samples from HIV-1 infected subjects exhibited different binding patterns, and reactivity against printed proteins. Examining the totality of the specificity of the humoral response in this way reveals the exquisite diversity, and specificity of the humoral response to HIV.  相似文献   

11.
After three decades of research, an effective vaccine against the pandemic AIDS caused by human immunodeficiency virus (HIV) is not still available, and a deeper understanding of HIV immunology, as well as new chemical tools that may contribute to improve the currently available arsenal against the virus, is highly wanted. Among the few broadly neutralizing human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies, 2G12 is the only carbohydrate-directed one. 2G12 recognizes a cluster of high-mannose glycans on the viral envelope glycoprotein gp120. This type of glycan has thus been envisaged as a target to develop an HIV vaccine that is capable of eliciting 2G12-like antibodies. Herein we show that gold nanoparticles coated with self-assembled monolayers of synthetic oligomannosides [manno-gold glyconanoparticles (GNPs)], which are present in gp120, are able to bind 2G12 with high affinity and to interfere with 2G12/gp120 binding, as determined by surface plasmon resonance and saturation transfer difference NMR spectroscopy. Cellular neutralization assays demonstrated that GNPs coated with a linear tetramannoside could block the 2G12-mediated neutralization of a replication-competent virus under conditions that resemble the ones in which normal serum prevents infection of the target cell. Dispersibility in water and physiological media, absence of cytotoxicity, and the possibility of inserting more than one component into the same nanoparticle make manno-GNPs versatile, polyvalent, and multifunctional systems that may aid efforts to develop new multifaceted strategies against HIV.  相似文献   

12.
A murine mAb BAT123 (Ab1) directing to the principal neutralization site of human T cell leukemia virus (HTLV)-IIIB gp120 (amino acid residue 308-322) was used to generate syngeneic anti-Id mAb (Ab2). Among the Ab2, a mAb AB19-4 was characterized by both serologic and biologic methods to be paratope-specific (Ab2 beta), bearing the internal image of the neutralization site. AB19-4 was found to bind specifically to BAT123 and also to its mouse-human chimeric form in ELISA. The binding of AB19-4 to BAT123 was specifically inhibited by HTLV-IIIB gp120 and the synthetic epitope peptides of HTLV-IIIB and HTLV-IIIMN defined by BAT123. AB19-4 also inhibited the binding of BAT123 to HTLV-IIIB-infected H9 cells in flow cytometric studies. Polyclonal goat and sheep antisera against HTLV-IIIB gp120 reacted specifically with AB19-4, suggesting that AB19-4 may recognize cross-species idiotopes. Rabbits immunized with purified AB19-4 generated anti-anti-Id antibodies (Ab3) that reacted specifically with HTLV-IIIB gp120 and the BAT123-binding epitope peptides of HTLV-IIIB and HTLV-IIIMN. The Ab3 bound to H9 cells infected by HTLV-IIIB or HTLV-IIIMN and inhibited the infection of CEM cells by HTLV-IIIB or HTLV-IIIMN, whereas BAT123 also bound H9 cells infected by HTLV-IIIB or HTLV-IIIMN but neutralized only HTLV-IIIB. Our data suggest that AB19-4 mimics the neutralization site on HIV-1 gp120 defined by BAT123. The induction of immunity to HIV using internal-image Ab2 to HIV-neutralizing antibodies may provide a viable approach for developing effective vaccines for AIDS.  相似文献   

13.
Current vaccine efforts to elicit cross-reactive neutralizing antibodies (NAbs) against human immunodeficiency virus (HIV) focus on the engineering of soluble mimetics of the trimeric HIV Env glycoprotein (commonly termed gp140 immunogens). Such immunogens are thought to be more effective than previously tested monomeric gp120 immunogens at eliciting cross-reactive NAbs. Still, the breadth of neutralizing antibody responses elicited by gp140 immunogens is narrow. Understanding why antibodies elicited by gp140 immunogens fail to neutralize a wide range of heterologous primary HIV isolates is necessary for improving the design of such immunogens. We previously reported that antibodies elicited in macaques by SF162 Env-derived gp140 immunogens fail to neutralize several heterologous “neutralization-resistant” primary HIV type 1 isolates, such as JRFL, ADA, and YU2. Here we show that by replacing the V1 region of Env on these heterologous viruses with that of SF162, we render them highly susceptible to neutralization by the SF162gp140-elicited antibodies. We observed that viral neutralization was mediated not only by vaccine-elicited anti-V1 but also by anti-V3 antibodies and antibodies directed against as yet unidentified Env regions, depending on the heterologous Env background. Our study indicates that common neutralization epitopes are differentially exposed on diverse primary HIV isolates and that the V1 loop contributes to this differential exposure. Therefore, the antibody responses elicited by soluble gp140 immunogens will have to overcome several distinct obstacles in order to neutralize diverse primary HIV isolates.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies are thought be distinguished from nonneutralizing antibodies by their ability to recognize functional gp120/gp41 envelope glycoprotein (Env) trimers. The antibody responses induced by natural HIV-1 infection or by vaccine candidates tested to date consist largely of nonneutralizing antibodies. One might have expected a more vigorous neutralizing response, particularly against virus particles that bear functional trimers. The recent surprising observation that nonneutralizing antibodies can specifically capture HIV-1 may provide a clue relating to this paradox. Specifically, it was suggested that forms of Env, to which nonneutralizing antibodies can bind, exist on virus surfaces. Here, we present evidence that HIV-1 particles bear nonfunctional gp120/gp41 monomers and gp120-depleted gp41 stumps. Using a native electrophoresis band shift assay, we show that antibody-trimer binding predicts neutralization and that the nonfunctional forms of Env may account for virus capture by nonneutralizing antibodies. We hypothesize that these nonfunctional forms of Env on particle surfaces serve to divert the antibody response, helping the virus to evade neutralization.  相似文献   

15.
Human immunodeficiency virus (HIV) type 1 infection requires functional interactions of the viral surface (gp120) glycoprotein with cell surface CD4 and a chemokine coreceptor (usually CCR5 or CXCR4) and of the viral transmembrane (gp41) glycoprotein with the target cell membrane. Extensive genetic variability, generally in gp120 and the gp41 ectodomain, can result in altered coreceptor use, fusion kinetics, and neutralization sensitivity. Here we describe an R5 HIV variant that, in contrast to its parental virus, infects T-cell lines expressing low levels of cell surface CCR5. This correlated with an ability to infect cells in the absence of CD4, increased sensitivity to a neutralizing antibody recognizing the coreceptor binding site of gp120, and increased resistance to the fusion inhibitor T-20. Surprisingly, these properties were determined by alterations in gp41, including the cytoplasmic tail, a region not previously shown to influence coreceptor use. These data indicate that HIV infection of cells with limiting levels of cell surface CCR5 can be facilitated by gp41 sequences that are not exposed on the envelope ectodomain yet induce allosteric changes in gp120 that facilitate exposure of the CCR5 binding site.  相似文献   

16.
Human immunodeficiency virus (HIV)-specific IgA can be detected in cervical secretions, saliva, and sera of HIV-infected and HIV-uninfected individuals with a known exposure to the virus. IgA from HIV-uninfected exposed seronegative individuals (ESN) neutralize in vitro primary strains of HIV-1. We analyzed the epitopes of HIV recognized by serum HIV-specific IgA of ESN individuals to identify the antigenic correlates of HIV neutralization in exposed-uninfected subjects, and to verify whether different epitopes would be recognized by HIV-specific IgA of ESN and of HIV-infected patients. Results confirmed that HIV-neutralizing IgA are detected in sera of ESN and showed that neutralization of primary HIV strains is mediated by the recognition of different epitopes in HIV-infected patients and ESN. Thus, whereas IgA of HIV+ individuals recognize epitopes expressed both within gp120 and gp41, IgA of ESN exclusively bind to gp41-expressed epitopes. Epitope mapping revealed that the epitope recognized by serum IgA of ESN on gp41 is restricted to aa 581-584 (LQAR) and corresponds to coiled coil pocket in the alpha helic region. In contrast, the epitope seen by IgA of HIV-infected patients on gp41 is identified by two regions; the first is contained within the cystein loop (aa 589-618), the second correspond to C terminal region in the extra membrane region of gp 41 (aa 642-673). Thus, we have identified and characterized the epitopes that mediate neutralization of HIV in individuals in whom infection does not occur despite multiple exposures to the virus. These results have important implications for the development of a new therapy against HIV infection.  相似文献   

17.
Animals immunized with the human immunodeficiency virus type 1 gp160 glycoprotein or certain recombinant envelope components develop potent virus-neutralizing activity. This activity is principally due to antibodies directed toward a hypervariable region of gp120 between cysteine residues 302 and 337 and is virus isolate specific. These antisera, as well as two neutralizing monoclonal antibodies directed against the same hypervariable sequence, do not appreciably block gp120 from binding CD4. In contrast, serum samples from infected humans possess high titers of antibodies that block gp120-CD4 binding; these titers approximately correlate with the serum neutralization titers. Our results suggest that there are at least two targets on the envelope glycoprotein for virus neutralization. The target responsible for the broader neutralizing activity of human serum may be a conserved region of gp120 involved in CD4 binding. The antibodies directed at the hypervariable region of the envelope inhibit a different step in virus infection which is subsequent to receptor binding. The extent to which these two different epitopes of gp120 may be involved in protection against human immunodeficiency virus infection is discussed.  相似文献   

18.
The majority of potent and broadly neutralizing antibodies against HIV-1 have been isolated from untreated patients with acute or chronic infection. To assess the extent of HIV-1 specific antibody response and neutralization after many years of virologic suppression from potent combination ART, we examined antibody binding titers and neutralization of 51 patients with chronic HIV-1 infection on suppressive ART for at least three years. In this cross-sectional analysis, we found high antibody titers against gp120, gp41, and the membrane proximal external region (MPER) in 59%, 43%, and 27% of patients, respectively. We observed significantly higher endpoint binding titers for gp120 and gp41 for patients with >10 compared to ≤10 years of detectable HIV RNA. Additionally, we observed higher median gp120 and gp41 antibody titers in patients with HIV RNA <50 copies/mL for ≤5 years. 22% of patients neutralized a HIV-1 primary isolate (HIV-1JR-FL) and 8% neutralized a HIV-2/HIV-1 MPER chimera. Significantly greater HIV-1JR-FL neutralization was found among patients with >10 years of detectable HIV RNA (8/20 [40.0%] versus 3/31 [9.7%] for ≤10 years, p = 0.02) and a trend toward greater neutralization in patients with ≤5 years of HIV RNA <50 copies/mL (7/20 [35.0%] versus 4/31 [12.9%] for >5 years, p = 0.08). All patients with neutralizing activity mediated successful phagocytosis of VLPs by THP-1 cells after antibody opsonization. Our findings of highly specific antibodies to several structural epitopes of HIV-1 with antibody effector functions and neutralizing activity after long-term suppressive ART, suggest continuous antigenic stimulation and evolution of HIV-specific antibody response occurs before and after suppression with ART. These patients, particularly those with slower HIV progression and more time with detectable viremia prior to initiation of suppressive ART, are a promising population to identify and further study functional antibodies against HIV-1.  相似文献   

19.
In human immunodeficiency virus (HIV) the viral envelope proteins gp41 and gp120 form a non-covalent complex, which is a potential target for AIDS therapies. In addition gp41 plays a possible role in HIV infection of B cells via the complement system. In an effort to better understand the molecular interactions of gp41, the structure of the HIV gp41 ectodomain has been modeled using the NMR restraints of the simian immunodeficiency virus (SIV) gp41 ectodomain (M. Caffrey, M. Cai, J. Kaufman, S.J. Stahl, P.T. Wingfield, A.M. Gronenborn, G.M. Clore, Solution structure of the 44 kDa ectodomain of SIV gp41, EMBO J. 17 (1998) 4572--4584). The resulting model presents the first structural information for the HIV gp41 loop, which has been implicated to play a direct role in binding to gp120 and C1q of the complement system.  相似文献   

20.
The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号