首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7?days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1?day in cold and to 27%/28% after 7?days in cold) while beta3-AR were increased (to 216% of control) when 7?days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.  相似文献   

2.
Administration of beta-adrenergic receptor (beta-AR) agonists, especially beta(3)-AR agonists, is well known to increase thermogenesis in rodents and humans. In this work we studied the role of the beta(3)-AR in regulating mRNA expression of genes involved in thermogenesis, i.e., mitochondrial uncoupling proteins UCP2 and UCP3, and peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1), in mouse skeletal muscle. For this purpose, different beta(3)-AR agonists were administered acutely to both wild type mice and mice whose beta(3)-AR gene has been disrupted (beta(3)-AR KO mice). CL 316243 increased the expression of UCP2, UCP3 and PGC-1 in wild type mice only. By contrast, BRL 37344 and CGP 12177 increased the expression of UCP2 and UCP3 in both wild type and beta(3)-AR KO mice, whereas they increased the expression of PGC-1 in wild type mice only. Finally, acute (3 h) cold exposure increased the expression of UCP2 and UCP3, but not PGC-1, in skeletal muscle of both wild type and beta(3)-AR KO mice. These results show that selective stimulation of the beta(3)-AR affects the expression of UCP2, UCP3 and PGC-1 in skeletal muscle. This effect is probably indirect, as muscle does not seem to express beta(3)-AR. In addition, our data suggest that BRL 37344 and CGP 12177 act, in part, through an as yet unidentified receptor, possibly a beta(4)-AR.  相似文献   

3.
Adenosine, acting on A(1)-receptors (A(1)-AR) in the nephron, increases sodium reabsorption, and also increases renal vascular resistance (RVR), via A(1)-ARs in the afferent arteriole. ANG II increases blood pressure and RVR, and it stimulates adenosine release in the kidney. We tested the hypothesis that ANG II-infused hypertension is potentiated by A(1)-ARs' influence on Na(+) reabsorption. Mean arterial pressure (MAP) was measured by radiotelemetry in A(1)-AR knockout mice (KO) and their wild-type (WT) controls, before and during ANG II (400 ng·kg(-1)·min(-1)) infusion. Baseline MAP was not different between groups. ANG II increased MAP in both groups, but on day 12, MAP was lower in A(1)-AR KO mice (KO: 128 ± 3 vs. 139 ± 3 mmHg, P < 0.01). Heart rates were significantly different during days 11-14 of ANG II. Basal sodium excretion was not different (KO: 0.15 ± 0.03 vs. WT: 0.13 ± 0.04 mmol/day, not significant) but was higher in KO mice 12 days after ANG II despite a lower MAP (KO: 0.22 ± 0.03 vs. WT: 0.11 ± 0.02 mmol/day, P < 0.05). Phosphate excretion was also higher in A(1)-AR KO mice on day 12. Renal expression of the sodium-dependent phosphate transporter and the Na(+)/glucose cotransporter were lower in the KO mice during ANG II treatment, but the expression of the sodium hydrogen exchanger isoform 3 was not different. These results indicate that the increase in blood pressure seen in A(1)-AR KO mice is lower than that seen in WT mice but was increased by ANG II nonetheless. The presence of A(1)-ARs during a low dose of ANG II-infusion limits Na(+) and phosphate excretion. This study suggests that A(1)-AR antagonists might be an effective antihypertensive agent during ANG II and volume-dependent hypertension.  相似文献   

4.
A fundamental question in biology is how the various motifs in G protein-coupled receptors participate in the divergent functions orchestrated by these molecules. Here we describe a fundamental role for a serine residue at position 312 in the third intracellular loop of the human beta(1)-adrenergic receptor (beta(1)-AR) in endocytic recycling of the agonist-internalized receptor. In receptor recycling experiments that were monitored by confocal microscopy, the agonist-internalized wild-type (WT) beta(1)-AR recycled with a t(0.5) of 14 +/- 3 min. Mutagenesis of Ser(312) to alanine (Ser(312) --> Ala beta(1)-AR) or to the phosphoserine mimic aspartic acid (Ser(312) --> Asp beta(1)-AR) resulted in beta(1)-AR constructs that were pharmacologically indistinguishable from the WT beta(1)-AR. The internalized Ser(312) --> Asp beta(1)-AR recycled efficiently with a t(0.5) of 11 +/- 3 min, whereas the internalized Ser(312) --> Ala beta(1)-AR was not recycled or functionally resensitized through the endosomal pathway. Because this serine is a putative residue for phosphorylation by the cyclic AMP-dependent protein kinase (PKA), we examined the role of this kinase in recycling of the internalized beta(1)-AR. Inhibition of PKA biochemically or genetically using a dominant negative PKA construct blocked the recycling of the internalized WT beta(1)-AR. Phosphorylation studies revealed that the beta(1)-AR is partially phosphorylated by PKA and that phosphorylation of the beta(1)-AR by the catalytic subunit of PKA occurs exclusively at Ser(312). Our results identify a new signaling paradigm in which homologous activation of a kinase provides a reversible modification that shifts the itinerary of the internalized receptor toward recycling and resensitization. Therefore, PKA-mediated phosphorylation of G protein-coupled receptors might result in motif-dependent desensitization or resensitization.  相似文献   

5.
Mycobacterial infection in MyD88-deficient mice   总被引:7,自引:0,他引:7  
MyD88 is an adaptor protein that plays a major role in TLR/IL-1 receptor family signaling. To understand the role of MyD88 in the development of murine tuberculosis in vivo, MyD88 knockout (KO) mice aerially were infected with Mycobacterium tuberculosis. Infected MyD88 mice were not highly susceptible to M. tuberculosis infection, but they developed granulomatous pulmonary lesions with neutrophil infiltration which were larger than those in wild-type (WT) mice (P < 0.01). The pulmonary tissue levels of mRNA for iNOS and IL-18 were slightly lower, but levels of mRNA for IL-1 beta, IL-2, IL-4, IL-6, IL-10, IFN-gamma, and TGF-beta were higher in MyD88 KO mice. IFN-gamma, TNF-alpha, IL-1 beta, and IL-12 also were high in the sera of MyD88 KO mice. There were no statistically significant differences in the expression of TNF-alpha, IL-12, and ICAM-1 mRNA between MyD88 KO and WT mice. Thus, MyD88 deficiency did not influence the development of murine tuberculosis. NF-kappa B activity was similar in the alveolar macrophages from the lung tissues of MyD88 KO and WT mice. Also, there may be a TLR2-specific, MyD88-independent IL-1 receptor/TLR-mediated pathway to activate NF-kappa B in the host defense against mycobacterial infection.  相似文献   

6.
Liu F  He K  Yang X  Xu N  Liang Z  Xu M  Zhao X  Han Q  Zhang Y 《PloS one》2011,6(6):e21520
G protein-coupled receptors (GPCRs) activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A)-adrenergic receptor (α(1A)-AR)-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Agonist-mediated endocytic traffic of α(1A)-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A). α(1A)-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A)-AR. α(1A)-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent). Activation of protein kinase C (PKC) and C-Raf by α(1A)-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor) and Ro 31-8220 (a PKC inhibitor) inhibited α(1B)-AR- but not α(1A)-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A)-AR-induced ERK1/2 activation, which is independent of G(q)/PLC/PKC signaling.  相似文献   

7.
The three known subtypes of beta-adrenoreceptors (beta(1)-AR, beta(2)-AR, and beta(3)-AR) are differentially expressed in brown and white adipose tissue and mediate peripheral responses to central modulation of sympathetic outflow by leptin. To assess the relative roles of the beta-AR subtypes in mediating leptin's effects on adipocyte gene expression, mice with a targeted disruption of the beta(3)-adrenoreceptor gene (beta(3)-AR KO) were treated with vehicle or the beta(1)/beta(2)-AR selective antagonist, propranolol (20 microgram/g body weight/day) prior to intracerebroventricular (ICV) injections of leptin (0.1 microgram/g body weight/day). Leptin produced a 3-fold increase in UCP1 mRNA in brown adipose tissue of wild type (FVB/NJ) and beta(3)-AR KO mice. The response was unaltered by propranolol in wild type mice, but was completely blocked by this antagonist in beta(3)-AR KO mice. In contrast, ICV leptin had no effect on leptin mRNA in either epididymal or retroperitoneal white adipose tissue (WAT) from beta(3)-AR KOs. Moreover, propranolol did not block the ability of exogenous leptin to reduce leptin mRNA in either WAT depot site of wild type mice. These results demonstrate that the beta(3)-AR is required for leptin-mediated regulation of ob mRNA expression in WAT, but is interchangeable with the beta(1)/beta(2)-ARs in mediating leptin's effect on UCP1 mRNA expression in brown adipose tissue.  相似文献   

8.
A decrease in bone mineral density during menopause is accompanied by an increase in adipocytes in the bone marrow space. Ovariectomy also leads to accumulation of fat in the bone marrow. Herein we show increased lipid accumulation in bone marrow from estrogen receptor alpha (ERα) knockout (ERαKO) mice compared to wild‐type (WT) mice or estrogen receptor beta (ERβ) knockout (ERβKO) mice. Similarly, bone marrow cells from ERαKO mice differentiated to adipocytes in culture also have increased lipid accumulation compared to cells from WT mice or ERβKO mice. Analysis of individual adipocytes shows that WT mice have fewer, but larger, lipid droplets per cell than adipocytes from ERαKO or ERβKO animals. Furthermore, higher levels of adipose triglyceride lipase (ATGL) protein in WT adipocytes correlate with increased lipolysis and fewer lipid droplets per cell and treatment with 17β‐estradiol (E2) potentiates this response. In contrast, cells from ERαKO mice display higher perilipin protein levels, promoting lipogenesis. Together these results demonstrate that E2 signals via ERα to regulate lipid droplet size and total lipid accumulation in the bone marrow space in vivo. J. Cell. Biochem. 114: 1306–1314, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6) was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP) and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO) mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT) controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6.Our results demonstrate that 1) in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2) STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3) STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency.  相似文献   

10.
11.
A plausible determinant of the specificity of receptor signaling is the cellular compartment over which the signal is broadcast. In rat heart, stimulation of beta(1)-adrenergic receptor (beta(1)-AR), coupled to G(s)-protein, or beta(2)-AR, coupled to G(s)- and G(i)-proteins, both increase L-type Ca(2+) current, causing enhanced contractile strength. But only beta(1)-AR stimulation increases the phosphorylation of phospholamban, troponin-I, and C-protein, causing accelerated muscle relaxation and reduced myofilament sensitivity to Ca(2+). beta(2)-AR stimulation does not affect any of these intracellular proteins. We hypothesized that beta(2)-AR signaling might be localized to the cell membrane. Thus we examined the spatial range and characteristics of beta(1)-AR and beta(2)-AR signaling on their common effector, L-type Ca(2+) channels. Using the cell-attached patch-clamp technique, we show that stimulation of beta(1)-AR or beta(2)-AR in the patch membrane, by adding agonist into patch pipette, both activated the channels in the patch. But when the agonist was applied to the membrane outside the patch pipette, only beta(1)-AR stimulation activated the channels. Thus, beta(1)-AR signaling to the channels is diffusive through cytosol, whereas beta(2)-AR signaling is localized to the cell membrane. Furthermore, activation of G(i) is essential to the localization of beta(2)-AR signaling because in pertussis toxin-treated cells, beta(2)-AR signaling becomes diffusive. Our results suggest that the dual coupling of beta(2)-AR to both G(s)- and G(i)-proteins leads to a highly localized beta(2)-AR signaling pathway to modulate sarcolemmal L-type Ca(2+) channels in rat ventricular myocytes.  相似文献   

12.
Beta1- and beta2-adrenergic receptors (beta-ARs) co-exist in mammalian heart, and it is generally accepted that both activate adenylyl cyclase (AC), resulting in increased levels of cAMP and subsequent activation of L-type Ca2+ channels (CaCh). To investigate the contribution of each beta-AR subtype in AC and CaCh coupling, we stably expressed cardiac CaCh alpha1 and beta2 subunits along with either beta1-AR or beta2-AR in CHW fibroblasts. Co-expression of either beta-AR with CaCh subunits conferred responsiveness of AC and CaCh to isoproterenol (ISO), which was not observed in non-transfected cells. ISO-promoted cAMP formation occurred at a lower EC50 through the beta2-AR than through the beta1-AR (0.13 +/- 0.01 vs. 0.6 +/- 0.14 nM). In contrast, activation of CaCh was more efficacious via the beta1-AR than the beta2-AR (EC50 for CaCh activation = 238 +/- 33 vs. 1057 +/- 113 nM). Pre-treatment with pertussis toxin (PTX) had no effect upon the responsiveness of either cAMP formation or CaCh activation through either receptor. We conclude (1) that beta1-ARs exhibit preferential coupling to CaCh activation, versus that observed for the beta2-AR; (2) that this preferential coupling cannot be explained solely by cAMP-dependent processes; and (3) that the relative attenuation of beta2-AR-promoted CaCh activation is not due to receptor coupling to PTX-sensitive G proteins. Thus, it is likely that other subtype-specific, cAMP-independent coupling of the beta-AR to CaCh is present.  相似文献   

13.
Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production.  相似文献   

14.
Bai Y  Kirigiti P  Li X  Li B  Tian L  Ma MY  Machida CA 《BioTechniques》2003,35(1):100-4, 106, 108-11
The rat beta 1-adrenergic receptor (beta 1-AR) gene contains glucocorticoid response element (GRE) half-sites at positions -2767 and -945. In electrophoretic mobility shift assay (EMSA) experiments, neither beta 1-AR GRE half-site recognized glucocorticoid receptors (GRs) obtained from baculovirus high-level expression systems or from mammalian cells. We have developed a sensitive UV cross-linking/immunoprecipitation assay, using a 524-bp fragment containing the prototypical GRE obtained from the rat tyrosine aminotransferase promoter sequence and using antibodies recognizing mammalian GR. Using this assay, we provide evidence that rat beta 1-AR gene sequences recognize mammalian GRs expressed in mouse 3T3 cells and that the site of GR interaction does not appear to specifically contain the beta 1-AR GRE half-sites. This represents one of the first reports demonstrating the utility of a UV cross-linking/immunoprecipitation assay in the detection of mammalian GR interaction with beta 1-AR sequences, is consistent with the lack of specific DNA-GR protein complexes observed in EMSA experiments using oligonucleotide probes containing the beta 1-AR GRE half-sites, and provides evidence that mammalian GR interaction occurs at complex rate beta 1-AR gene sequences.  相似文献   

15.
The beta(2)-adrenergic receptor (beta(2)-AR) negatively regulates T cell activity through the activation of the G(s)/adenylyl cyclase/cAMP pathway. beta(2)-AR desensitization, which can be induced by its phosphorylation, may have important consequences for the regulation of T cell function in asthma. In the present study we demonstrate that the C-C chemokine thymus and activation-regulated chemokine (TARC) impairs the ability of beta(2)-agonist fenoterol to activate the cAMP downstream effector cAMP-responsive element binding protein (CREB) in freshly isolated human T cells. The TARC-induced activation of Src kinases resulted in membrane translocation of both G protein-coupled receptor kinase (GRK) 2 and beta-arrestin. Moreover, TARC was able to induce Src-dependent serine phosphorylation of the beta(2)-AR as well as its association with GRK2 and beta-arrestin. Finally, in contrast to CREB, phosphorylation of Src and extracellular signal-regulated kinase was enhanced by fenoterol upon TARC pretreatment. In summary, we show for the first time that TARC exposure impairs beta(2)-AR function in T cells. Our data suggest that this is mediated by Src-dependent activation of GRK2, resulting in receptor phosphorylation, binding to beta-arrestin, and a switch from cAMP-dependent signaling to activation of the MAPK pathway. We propose that aberrant T cell control in the presence of endogenous beta-agonists promotes T cell-mediated inflammation in asthma.  相似文献   

16.
颗粒体蛋白前体 (progranulin, PGRN)在多种肿瘤中过表达。但PGRN在黑色素瘤发生发展中的作用尚无报道。为探究PGRN在黑色素肿瘤中的作用,本研究采用CRISPR-Cas9基因编辑技术建立了稳定敲低PGRN的小鼠黑色素瘤B16细胞株B16-PGRNlow。MTS法和BrdU掺入结合流式细胞(计量)术分析证明,敲低PGRN不影响B16细胞的细胞周期和增殖。将B16-ctrl(对照)和B16-PGRNlow细胞分别皮下接种野生型(WT)和PGRN敲除(KO)的C57BL/6J小鼠,比较观察黑色素移植瘤体积大小。移植瘤形成20 d后,与B16-ctrl细胞接种的移植瘤比较,无论在WT还是在KO荷瘤小鼠,B16-PGRNlow形成的移植瘤体积明显减小(WT鼠:P<0.05;KO鼠:P<0.01)。然而,比较B16-PGRNlow或B16-ctrl在WT鼠与KO鼠形成的移植瘤体积大小,并无显著差异,提示B16肿瘤细胞PGRN而非宿主PGRN影响移植瘤的生长。流式细胞术分析显示,在荷B16-PGRNlow移植瘤的WT型小鼠脾和淋巴结中,CD4+、CD8+T细胞数(百分比)比荷B16-ctrl移植瘤的WT鼠脾和淋巴结的CD4+、CD8+T细胞数明显增多(P<0.05,P<0.01),而在KO鼠却未见明显差异。上述结果证明,敲低肿瘤细胞PGRN可抑制黑色素移植瘤的生长。上述结果还提示,抑制PGRN在黑色瘤的表达可引起脾和淋巴结CD4+和CD8+T细胞增加,提高宿主的细胞免疫能力。其机制尚待进一步研究。本文的发现为PGRN作为黑色素瘤治疗的潜在靶点提供了新证据。  相似文献   

17.
We examined the ability of 1,25 (OH)(2) vitamin D(3) (Vit D) to stimulate osteoclast-like cell (OCL) formation in cocultures of spleen cells and primary calvarial osteoblasts from wild-type (WT) and IL-1R type 1-deficient (knockout; KO) mice. Vit D dose dependently increased OCL in cocultures containing WT osteoblasts. In contrast, there was a 90% reduction in OCL numbers in cocultures containing KO osteoblasts. In cocultures with either WT or KO osteoblasts, treatment with Vit D increased receptor activator of NF-kappaB ligand mRNA by 17-, 19-, or 3.5-fold, respectively. Vit D decreased osteoprotegerin mRNA to undetectable in all groups. Intracellular IL-1alpha protein increased after Vit D treatment in cocultures containing WT, but not KO osteoblasts. We also examined direct effects of Vit D, IL-1alpha, and their combination on gene expression in primary osteoblasts. In WT cells, Vit D and IL-1 stimulated receptor activator of NF-kappaB ligand mRNA expression by 3- and 4-fold, respectively, and their combination produced a 7-fold increase. Inhibition of osteoprotegerin mRNA in WT cells was partial with either agent alone and greatest with their combination. In KO cells, only Vit D stimulated a response. IL-1 alone increased IL-1alpha protein expression in WT osteoblasts. However, in combination with Vit D, there was a synergistic response (100-fold increase). In KO cultures, there were no effects of IL-1, Vit D, or their combination on IL-1alpha protein. These results demonstrate interactions between IL-1 and Vit D in primary osteoblasts that appear important in both regulation of IL-1alpha production and the ability of Vit D to support osteoclastogenesis.  相似文献   

18.
G-protein-coupled receptors (GPCRs) can indirectly activate Ras primarily through the betagamma subunits of G proteins, which recruit c-Src, phosphatidylinositol 3-kinase, and Grb2-SOS. However, a direct interaction between a Ras activator (guanine nucleotide exchange factor [GEF]) and GPCRs that leads to Ras activation has never been demonstrated. We report here a novel mechanism for a direct GPCR-mediated Ras activation. The beta1 adrenergic receptor (beta1-AR) binds to the PDZ domain of the cyclic AMP (cAMP)-dependent Ras exchange factor, CNrasGEF, via its C-terminal SkV motif. In cells heterologously expressing beta1-AR and CNrasGEF, Ras is activated by the beta1-AR agonist isoproterenol, and this activation is abolished in beta1-AR mutants that cannot bind CNrasGEF or in CNrasGEF mutants lacking the catalytic CDC25 domain or cAMP-binding domain. Moreover, the activation is transduced via Gsalpha and not via Gbetagamma. In contrast to beta1-AR, the beta2-AR neither binds CNrasGEF nor activates Ras via CNrasGEF after agonist stimulation. These results suggest a model whereby the physical interaction between the beta1-AR and CNrasGEF facilitates the transduction of Gsalpha-induced cAMP signal into the activation of Ras. The present study provides the first demonstration of direct physical association between a Ras activator and a GPCR, leading to agonist-induced Ras activation  相似文献   

19.
A novel clonal cell line transfected with the delta-opioid receptor (delta-OR) encoding gene was used to study agonist-activated regulation of cell proliferation. In this cell line, endogenous beta2-adrenergic receptors (beta2-ARs) are coexpressed with the exogenous delta-ORs. Upon individual acute treatments with morphine and procaterol (a selective beta2-AR agonist), both the delta-OR and beta2-AR are coupled to differential modulation of cyclic AMP (cAMP) levels in accord with the classical second messenger response patterns to these agonists in the normal cellular settings of the receptors. But chronic morphine activation of the delta-OR inhibits cellular proliferation, while chronic procaterol activation of the beta2-AR stimulates it. Chronic treatment with the individual agonists is accompanied by differential activation of the mitogen-activated protein kinase (MAPK) isozymes, extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). The findings suggest that chronic beta2-AR activation stimulates proliferation by interacting with the ERK signalling cascade independent of a cAMP-mediated pathway. In contrast to treatment with individual agonists, chronic dual agonist treatment suppresses procaterol-induced stimulation of ERK activity and stimulation of proliferation indicating that a cross-regulatory interaction occurs between the delta-OR and beta2-AR signalling systems in the cells under these conditions.  相似文献   

20.
The effect of extracellular ATP on salivary gland function was compared in wild-type (WT) and P2X(7) knockout (KO) mice. The increase in the intracellular concentration of calcium ([Ca(2+)](i)) in response to carbachol was similar in submandibular ductal cells of WT and KO mice. ATP and its analog, benzoyl-ATP, induced a sustained increase in the [Ca(2+)](i) in WT animals. In KO mice, ATP slightly and transiently increased the [Ca(2+)](i) and benzoyl-ATP had no effect. The response to ATP of WT but not KO mice was blocked by KN-62, Coomassie blue and magnesium. The small response of ATP observed in KO mice was completely blocked in the absence of extracellular calcium, unchanged by U73122 and potentiated by ivermectin indicating the probable involvement of a P2X(4) receptor. A RT-PCR and a Western blot confirmed the presence of these receptors in ducts of both WT and KO mice. ATP increased the permeability of the cells to ethidium bromide and stimulated a phospholipase A(2) activity in WT but not KO mice. Mice submandibular gland cells secreted IL-1beta but this secretion was not modified by ATP and was similar in both groups of animals. The volume of saliva provoked by pilocarpine and the concentration of proteins, sodium and chloride in this saliva was similar in both groups of animals. The concentration of potassium was higher in KO mice. We can conclude that the major purinergic receptors expressed in mice submandibular ductal cells are P2X(7) receptors but that P2X(4) receptors are also involved in some ATP effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号