首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
Spatiotemporal Variations of Fire Frequency in Central Boreal Forest   总被引:1,自引:0,他引:1  
Determination of the direct causal factors controlling wildfires is key to understanding wildfire–vegetation–climate dynamics in a changing climate and for developing sustainable management strategies for biodiversity conservation and maintenance of long-term forest productivity. In this study, we sought to understand how the fire frequency of a large mixedwood forest in the central boreal shield varies as a result of temporal and spatial factors. We reconstructed the fire history of an 11,600-km2 area located in the northwestern boreal forest of Ontario, using archival data of large fires occurring since 1921 and dendrochronological dating for fires prior to 1921. The fire cycle decreased from 295 years for the period of 1820–1920 to approximately 100 years for the period of 1921–2008. Spatially, fire frequency increased with latitude, attributable to higher human activities that have increased fragmentation and fire suppression in the southern portion of the study area. Fire frequency also increased with distance to waterbodies, and was higher on Podzols that were strongly correlated with moderate drainage and coniferous vegetation. The temporal increase of fire frequency in the central region, unlike western and eastern boreal forests where fire frequency has decreased, may be a result of increased warm and dry conditions associated with climate change in central North America, suggesting that the response of wildfire to global climate change may be regionally individualistic. The significant spatial factors we found in this study are in agreement with other wildfire studies, indicating the commonality of the influences by physiographic features and human activities on regional fire regimes across the boreal forest. Overall, wildfire in the central boreal shield is more frequent than that in the wetter eastern boreal region and less frequent than that in the drier western boreal region, confirming a climatic top-down control on the fire activities of the entire North American boreal forest.  相似文献   

2.
The palaeodiversity of flowering plants in Yunnan has been extensively interpreted from both a molecular and fossil perspective. However, for cryptogamic plants such as ferns, the palaeodiversity remains poorly known. In this study, we describe a new ferny fossil taxon, Drynaria lanpingensis sp. nov. Huang,Su et Zhou(Polypodiaceae), from the late Pliocene of northwestern Yunnan based on fragmentary frond and pinna with in situ spores. The frond is pinnatifid and the pinnae are entirely margined. The sori are arranged in one row on each side of the primary vein. The spores have a semicircular to bean-shaped equatorial view and a tuberculate surface. Taken together with previously described fossils, there are now representatives of three known fossil taxa of Drynaria from the late Pliocene of western Yunnan.These finds suggest that Drynaria diversity was considerable in the region at that time. As Drynaria is a shade-tolerant plant, growing preferably in wet conditions in the understory of forests, its extensive existence may indicate forest vegetation and humid climates in western Yunnan during the late Pliocene.This is in line with results from floristic investigations and palaeoclimatic reconstructions based on fossil floras.  相似文献   

3.
Forests provide climate change mitigation benefit by sequestering carbon during growth. This benefit can be reversed by both human and natural disturbances. While some disturbances such as hurricanes are beyond the control of humans, extensive research in dry, temperate forests indicates that wildfire severity can be altered as a function of forest fuels and stand structural manipulations. The purpose of this study was to determine if current aboveground forest carbon stocks in fire‐excluded southwestern ponderosa pine forest are higher than prefire exclusion carbon stocks reconstructed from 1876, quantify the carbon costs of thinning treatments to reduce high‐severity wildfire risk, and compare posttreatment (thinning and burning) carbon stocks with reconstructed 1876 carbon stocks. Our findings indicate that prefire exclusion forest carbon stocks ranged from 27.9 to 36.6 Mg C ha?1 and that the current fire‐excluded forest structure contained on average 2.3 times as much live tree carbon. Posttreatment carbon stocks ranged from 37.9 to 50.6 Mg C ha?1 as a function of thinning intensity. Previous work found that these thinning and burning treatments substantially increased the 6.1 m wind speed necessary for fire to move from the forest floor to the canopy (torching index) and the wind speed necessary for sustained crown fire (crowning index), thereby reducing potential fire severity. Given the projected drying and increase in fire prevalence in this region as a function of changing climatic conditions, the higher carbon stock in the fire‐excluded forest is unlikely to be sustainable. Treatments to reduce high‐severity wildfire risk require trade‐offs between carbon stock size and carbon stock stability.  相似文献   

4.
A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine‐scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long‐lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire‐induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.  相似文献   

5.
Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring.This article is part of the themed issue ‘The interaction of fire and mankind’.  相似文献   

6.
Larger, more frequent wildfires in arid and semi‐arid ecosystems have been associated with invasion by non‐native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time‐lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26‐year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non‐native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non‐native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years’ growth. Consequently, multiyear weather patterns, including precipitation in the previous 1–3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35‐year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.  相似文献   

7.
To understand the Neogene climatic changes in eastern Asia and evaluate the intercontinental climatic differences, we have quantitatively reconstructed the vegetation successions and climatic changes in the late Pliocene Zhangcun area based on the palynological data and explored the regional climatic differences between central Europe and eastern Asia. The late Pliocene palynological assemblage of Zhangcun, Shanxi was composed of 63 palynomorphs, belonging to 50 families, covering angiosperms (90.2%), gymnosperms (9.7%), ferns (0.09%), and other elements (0.02%). Four periods of vegetation succession over time were recognized. In period 1, a needle‐ and broad‐leaved mixed forest prevailed with a cool and dry climate. Period 2 was characterized by an expansion of forest with a warmer and wetter climate. The number of conifers increased and that of herbs decreased in period 3, and the climate became cool and dry. In period 4, the forest was dominated by conifers and reflecting a cooler climate. The data of seven climatic parameters in general and four periods estimated by the Coexistence Approach suggested that (1) The late Pliocene temperatures and precipitations were higher than today. (2) The Neogene climate of both Central Europe and North China exhibited a general cooling and drying trend although the mean annual temperature dropped by ca. 1 °C in North China, vs. ca. 7 °C in Central Europe from the middle Miocene to the late Pliocene. (3) The decline of the mean maximum monthly precipitation might signal a weakening of the summer monsoon. (4) The decline of both the mean coldest monthly temperature and the mean minimum monthly precipitation might be linked to the strengthening of the winter monsoon in eastern Asia. (5) The rapid uplift of the Tibetan Plateau strengthened the climatic cooling and drying during the late Pliocene of the Zhangcun region.  相似文献   

8.
Wildfire refugia (unburnt patches within large wildfires) are important for the persistence of fire‐sensitive species across forested landscapes globally. A key challenge is to identify the factors that determine the distribution of fire refugia across space and time. In particular, determining the relative influence of climatic and landscape factors is important in order to understand likely changes in the distribution of wildfire refugia under future climates. Here, we examine the relative effect of weather (i.e. fire weather, drought severity) and landscape features (i.e. topography, fuel age, vegetation type) on the occurrence of fire refugia across 26 large wildfires in south‐eastern Australia. Fire weather and drought severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Unburnt patches rarely occurred under ‘severe’ fire weather, irrespective of drought severity, topography, fuels or vegetation community. The influence of drought severity and landscape factors played out most strongly under ‘moderate’ fire weather. In mesic forests, fire refugia were linked to variables that affect fuel moisture, whereby the occurrence of unburnt patches decreased with increasing drought conditions and were associated with more mesic topographic locations (i.e. gullies, pole‐facing aspects) and vegetation communities (i.e. closed‐forest). In dry forest, the occurrence of refugia was responsive to fuel age, being associated with recently burnt areas (<5 years since fire). Overall, these results show that increased severity of fire weather and increased drought conditions, both predicted under future climate scenarios, are likely to lead to a reduction of wildfire refugia across forests of southern Australia. Protection of topographic areas able to provide long‐term fire refugia will be an important step towards maintaining the ecological integrity of forests under future climate change.  相似文献   

9.

Aim

Changes to the extent and severity of wildfires driven by anthropogenic climate change are predicted to have compounding negative consequences for ecological communities. While there is evidence that severe weather events like drought impact amphibian communities, the effects of wildfire on such communities are not well understood. The impact of wildfire on amphibian communities and species is likely to vary, owing to the diversity of their life-history traits. However, no previous research has identified commonalities among the amphibians at most risk from wildfire, limiting conservation initiatives in the aftermath of severe wildfire. We aimed to investigate the impacts of the unprecedented 2019–2020 black summer bushfires on Australian forest amphibian communities.

Location

Eastern coast of New South Wales, Australia.

Methods

We conducted visual encounter surveys and passive acoustic monitoring across 411 sites within two regions, one in northeast and one in southeast New South Wales. We used fire severity and extent mapping in two multispecies occupancy models to assess the impacts of fire on 35 forest amphibian species.

Results

We demonstrate a negative influence of severe fire extent on metacommunity occupancy and species richness in the south with weaker effects in the north—reflective of the less severe fires that occurred in this region. Both threatened and common species were impacted by severe wildfire extent. Occupancy of burrowing species and rain forest specialists had mostly negative relationships with severe wildfire extent, while arboreal amphibians had neutral relationships.

Main Conclusion

Metacommunity monitoring and adaptive conservation strategies are needed to account for common species after severe climatic events. Ecological, morphological and life-history variation drives the susceptibility of amphibians to wildfires. We document the first evidence of climate change-driven wildfires impacting temperate forest amphibian communities across a broad geographic area, which raises serious concern for the persistence of amphibians under an increasingly fire-prone climate.  相似文献   

10.
Although broadleaf tree species of the boreal biome have a lower flammability compared to conifers, there is a period following snow melt and prior to leaf flush (i.e., greenup), termed the “spring window” by fire managers, when these forests are relatively conducive to wildfire ignition and spread. The goal of this study was to characterize the duration, timing, and fire proneness of the spring window across boreal Canada and assess the link between these phenological variables and the incidence of springtime wildfires. We used remotely sensed snow cover and greenup data to identify the annual spring window for five boreal ecozones from 2001 to 2021 and then compared seasonality of wildfire starts (by cause) and fire-conducive weather in relation to this window, averaged over the 21-year period. We conducted a path analysis to concomitantly evaluate the influence of the spring window's duration, the timing of greenup, and fire-conducive weather on the annual number and the seasonality of spring wildfires. Results show that the characteristics of spring windows vary substantially from year to year and among geographic zones, with the interior west of Canada having the longest and most fire-conducive spread window and, accordingly, the greatest springtime wildfire activity. We also provide support for the belief that springtime weather generally promotes wind-driven, rather than drought-driven wildfires. The path analyses show idiosyncratic behavior among ecozones, but, in general, the seasonality of the wildfire season is mainly driven by the timing of the greenup, whereas the number of spring wildfires mostly responds to the duration of the spring window and the frequency of fire-conducive weather. The results of this study allows us to better understand and anticipate the biome-wide changes projected for the northern forests of North America.  相似文献   

11.
The subfamily Rosoideae Focke (Rosaceae) has a good fossil record in the Northern Hemisphere, but these fossil records are confined mainly to a few genera, whereas the majority, in particular those with herbaceous members, are still under‐represented. In this study, we describe new fruit fossils of Rosoideae, including Fragaria achenes and Rubus endocarps, from the late Pliocene of northwestern Yunnan, Southwest China. These fossils add new accounts to the fossil archive of Rosoideae and provide the first fossil record of Fragaria in East Asia. The new fossil findings provide a historical backdrop for the modern diversity and distribution of the subfamily in northwestern Yunnan, a topographically complex area accommodating a high diversity for many plant groups. Our Rubus fossils, in combination with other nearby coeval occurrences of the genus, suggest that Rubus was already establishing its modern diversity in northwestern Yunnan during the late Pliocene. This finding enriches our knowledge of the post‐Neogene diversification of flowering plants in northwestern Yunnan, which is thought to be largely driven by dramatic mountain uplifts and environmental complications associated with the southeastern extension of the Tibetan Plateau.  相似文献   

12.
Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo–Malaysia) type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to late Pliocene through to the present, floristic composition and vegetation types changed markedly, presumably in response to altitude changes and coeval global cooling. An integration of palaeoclimate data suggests that during the Neogene Yunnan was warmer and wetter than today. Moreover, northern Yunnan witnessed a pronounced temperature decline, while southern Yunnan experienced only moderate temperature changes. Summer precipitation was consistently higher than winter precipitation, suggesting a rainfall seasonality. This summary on palaeoclimates helps us to understand under what conditions plant diversity occurred and evolved in Yunnan throughout the Cenozoic.  相似文献   

13.
Increases in stand-replacing wildfires in the western USA have widespread implications for ecosystem carbon (C) cycling, in part because the decomposition of trees killed by fire can be a long-term source of CO2 to the atmosphere. Knowledge of the composition and function of decay fungi communities may be important to understanding how wildfire alters C cycles. We assessed the effects of stand-replacing wildfires on the community structure of wood-inhabiting fungi along a 32-yr wildfire chronosequence. Fire was associated with low species richness for up to 4 yr and altered species composition relative to unburned forest for the length of the chronosequence. A laboratory incubation demonstrated that species varied in their capacity to decompose wood; Hypocrea lixii, an indicator of the most recent burn, caused the lowest decomposition rate. Our results show that stand-replacing wildfires have long-term effects on fungal communities, which may have consequences for wood decomposition and C cycling.  相似文献   

14.
After decades of suppression, fire is returning to forests of the western United States through wildfires and prescribed burns. These fires may aid restoration of vegetation structure and processes, which could improve conditions for wildlife species and reduce severe wildfire risk. Understanding response of wildlife species to fires is essential to forest restoration because contemporary fires may not have the same effects as historical fires. Recent fires in the Chiricahua Mountains of southeastern Arizona provided opportunity to investigate long‐term effects of burn severity on habitat selection of a native wildlife species. We surveyed burned forest for squirrel feeding sign and related vegetation characteristics to frequency of feeding sign occurrence. We used radio‐telemetry within fire‐influenced forest to determine home ranges of Mexican fox squirrels, Sciurus nayaritensis chiricahuae, and compared vegetation characteristics within home ranges to random areas available to squirrels throughout burned conifer forest. Squirrels fed in forest with open understory and closed canopy cover. Vegetation within home ranges was characterized by lower understory density, consistent with the effects of low‐severity fire, and larger trees than random locations. Our results suggest that return of low‐severity fire can help restore habitat for Mexican fox squirrels and other native wildlife species with similar habitat affiliations in forests with a historical regime of frequent, low‐severity fire. Our study contributes to an understanding of the role and impact of fire in forest ecosystems and the implications for forest restoration as fire returns to the region.  相似文献   

15.
Recent research has concluded that forest wildfires in the western United States are becoming larger and more frequent. A more significant question may be whether the ecosystem impacts of wildfire are also increasing. We show that a large area (approximately 120000 km2) of California and western Nevada experienced a notable increase in the extent of forest stand-replacing (“high severity”) fire between 1984 and 2006. High severity forest fire is closely linked to forest fragmentation, wildlife habitat availability, erosion rates and sedimentation, post-fire seedling recruitment, carbon sequestration, and various other ecosystem properties and processes. Mean and maximum fire size, and the area burned annually have also all risen substantially since the beginning of the 1980s, and are now at or above values from the decades preceding the 1940s, when fire suppression became national policy. These trends are occurring in concert with a regional rise in temperature and a long-term increase in annual precipitation. A close examination of the climate–fire relationship and other evidence suggests that forest fuels are no longer limiting fire occurrence and behavior across much of the study region. We conclude that current trends in forest fire severity necessitate a re-examination of the implications of all-out fire suppression and its ecological impacts. Author Contributions: Jay Miller designed the study, performed research, analyzed data, and wrote the article. Hugh Safford performed research, analyzed data, and wrote the article. Michael Crimmins performed research and analyzed data. Andi Thode designed the study and performed research.  相似文献   

16.
Scattered trees are considered ‘keystone structures’ in many agricultural landscapes worldwide because of the disproportionate effect they have on ecosystem function and biodiversity. Populations of these trees are in decline in many regions. Understanding the processes driving these declines is crucial for better management. Here, we examine the impact of wildfire on populations of this keystone resource. We examined 62 observation plots affected by wildfire and matched with 62 control observation plots where fire was absent. Counts of scattered trees were conducted pre‐fire in 2005 and repeated post‐fire in 2011. Changes in populations were compared between the control and fire‐affected observation plots. Our results show wildfire had a significant local impact, with an average decline of 19.9% in scattered tree populations on burned plots. In contrast, scattered trees increased on average by 5.3% in the control observation plots. The impact of wildfire was amplified (as revealed by greater percentage tree losses) by larger wildfires. Wildfire effects on scattered tree populations are of concern, given a background of other (usually) chronic stressors (often associated with agriculture) and that the frequency and intensity of wildfire are predicted to increase in many landscapes.  相似文献   

17.
Charcoal occurrence is extensively used as a tool for understanding wildfires over geological timescales. Yet, the fossil charcoal literature to date rarely considers that fire alone is capable of creating a bias in the abundance and nature of charcoal it creates, before it even becomes incorporated into the fossil record. In this study we have used state‐of‐the‐art calorimetry to experimentally produce charcoal from 20 species that represent a range of surface fuels and growth habits, as a preliminary step towards assessing whether different fuel types (and plant organs) are equally likely to remain as charcoal post‐fire. We observe that charcoal production appears to be species specific, and is related to the intrinsic physical and chemical properties of a given fuel. Our observations therefore suggest that some taxa are likely to be overrepresented in fossil charcoal assemblages (i.e. needle‐shed conifers, tree ferns) and others poorly represented, or not preserved at all (i.e. broad shoot‐shed conifers, weedy angiosperms, shrub angiosperms, some ferns). Our study highlights the complexity of charcoal production in modern fuels and we consider what a bias in charcoal production may mean for our understanding of palaeowildfires.  相似文献   

18.
全球变化背景下野火研究进展   总被引:5,自引:2,他引:3  
野火是森林和多种植被生态系统面临的最重要自然干扰,也是一种重要的自然灾害;而人类活动已在全球范围内显著影响了野火的发生与分布,因此野火成为全球变化及其环境影响研究的关键议题之一。本文基于国际野火研究的文献搜索和统计分析,从野火的观测-评估-预警技术、野火时空格局研究、气候变化和人类活动对野火的影响、野火的环境-生态-进化效应等方面入手,综述了自21世纪以来的国际野火研究进展。概括起来,遥感技术的快速发展,推动了野火观测的时空分辨率不断提高,对野火时空格局的刻画从单一因子向多重指标的火烧体系评估转变。气候变化在某些区域已经显著影响了野火的发生频率,预计随着全球变暖野火风险将进一步加大,并且极端大火的发生机制和生态影响越来越受到关注。人类活动一方面通过增加火源提高了野火频率,另一方面又通过提高生态系统管理的强度、扑救火灾以及降低可燃物的连通性抑制了野火的发生。植被在长期演化过程中形成了一系列适应火的功能机制,这些功能属性影响着生态系统对野火的响应,并对火后生态恢复和重建具有科学指导价值。未来野火研究将向跨时空尺度、观测和模拟深度融合、典型机制和大尺度效应相结合的方向发展。  相似文献   

19.
《Palaeoworld》2021,30(4):593-601
Fires are an integral part of modern and ancient ecosystems, serving as friends for renewal or foes for complete destruction and extinction. Indicators of palaeowildfire were so far absent from the Lower Triassic. Lack of plants in the Early Triassic due to the end-Permian mass extinction event and low atmospheric oxygen levels were proposed as the major reasons for the scarcity of wildfires. We present macroscopic charcoals from the Olenekian (Lower Triassic) in northwestern China, indicating probable ground/smoldering fires occurred on landscapes in mid-latitudes of northeastern Pangaea. Atmospheric oxygen concentration during the Olenekian would have been above 18.5%. These findings demonstrate that wildfires continued to be a source of disturbance of terrestrial ecosystems in Bogda Mountains after the end-Permian marine biotic crisis. There were adequate supplies of fuels and oxygen during this critical time period in the Earth history.  相似文献   

20.
Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late‐successional conifers to early‐successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age‐dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age‐dependent succession, the relative abundances of early‐successional deciduous broadleaves and early‐successional conifers have increased at the expense of late‐successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO2 promoted early‐successional conifers and deciduous broadleaves, and warming increased early‐successional conifers at the expense of late‐successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO2 and warming will continue in the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号