首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The palaeodiversity of flowering plants in Yunnan has been extensively interpreted from both a molecular and fossil perspective. However, for cryptogamic plants such as ferns, the palaeodiversity remains poorly known. In this study, we describe a new ferny fossil taxon, Drynaria lanpingensis sp. nov. Huang,Su et Zhou(Polypodiaceae), from the late Pliocene of northwestern Yunnan based on fragmentary frond and pinna with in situ spores. The frond is pinnatifid and the pinnae are entirely margined. The sori are arranged in one row on each side of the primary vein. The spores have a semicircular to bean-shaped equatorial view and a tuberculate surface. Taken together with previously described fossils, there are now representatives of three known fossil taxa of Drynaria from the late Pliocene of western Yunnan.These finds suggest that Drynaria diversity was considerable in the region at that time. As Drynaria is a shade-tolerant plant, growing preferably in wet conditions in the understory of forests, its extensive existence may indicate forest vegetation and humid climates in western Yunnan during the late Pliocene.This is in line with results from floristic investigations and palaeoclimatic reconstructions based on fossil floras.  相似文献   

2.
Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo–Malaysia) type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to late Pliocene through to the present, floristic composition and vegetation types changed markedly, presumably in response to altitude changes and coeval global cooling. An integration of palaeoclimate data suggests that during the Neogene Yunnan was warmer and wetter than today. Moreover, northern Yunnan witnessed a pronounced temperature decline, while southern Yunnan experienced only moderate temperature changes. Summer precipitation was consistently higher than winter precipitation, suggesting a rainfall seasonality. This summary on palaeoclimates helps us to understand under what conditions plant diversity occurred and evolved in Yunnan throughout the Cenozoic.  相似文献   

3.
4.
《Palaeoworld》2021,30(3):551-561
Yunnan at southeastern margin of the Tibetan Plateau is subject to frequent wildfires each year, while its wildfire history remains poorly known due to the lack of studies on palaeofire in the region. In this study, we report a local fire from the late Pliocene of northwestern Yunnan, based on macroscopic fossil charcoals recovered from the Sanying Formation of Lanping Basin. These sedimentary charcoals exhibit silky lustre in the light and complete homogenization of adjacent xylem cell walls, characterizing the result of incomplete combustion during the late Pliocene. Our preliminary taxonomic analysis indicates that the studied charcoals are dominated by conifers, suggesting higher importance of coniferous elements as fuel sources in the fire. We assert a conifer-rich source forest for the fire event by also considering plant remains of other types, i.e., needle fragments, small shoots, fruits and seeds, from the same sampling layer. Since conifers are commonly prone to wildfires, this type of forest might have a close link with the fire by serving highly flammable fuels. We consider that the regionally seasonal drought during the late Pliocene might also take responsibility, because in the dry season forest fuels such as ground litter would become ignitable after intensive desiccation. As modern wildfires in northwestern Yunnan are closely coupled with conifer-dominant forests and seasonally dry climate, we assume this correlation might have been established by the late Pliocene. Our study may bring attention to potential roles of wildfire on local and/or regional flora and vegetation evolution in this region.  相似文献   

5.
Foliar fossils of Proteaceae are reviewed, and useful specimens for interpreting evolution, and past and present distributions and environments are discussed. There are no definite Cretaceous occurrences. However, there is evidence of extant lineages dating from the Paleocene onwards, including tribe Persoonieae of subfamily Persoonioideae and each of the four tribes of subfamily Grevilleoideae. High diversity and abundance characterizes the Australian fossil record, including sclerophyllous and xeromorphic forms, but there is little evidence of the prominent extant subfamily Proteoideae. New Zealand had a much higher diversity of Proteaceae than at present, including Oligo-Miocene species of open vegetation. The South American leaf fossil record is not extensive. However, the fossil records of Embothrieae and Orites are consistent with the distributions of their extant relatives in South America and Australia being the result of vicariance. Overall, there is a need for more research on placing Proteaceae leaf fossils in a phylogenetic context.  相似文献   

6.
Aim We tested an entrenched concept – that the Australian rain forest flora is essentially a Gondwanan relict. We also assessed the role of regional‐level source–sink dynamics in the assembly of this flora. Location Eastern Australia. Methods To avoid potential biases inherent in selective studies undertaken to date, we used an analytical, whole‐of‐flora approach integrated with the fossil record. We identified disjunctions between woody Australian rain forest plant taxa and relatives on other land masses. To test the strength of the fossil evidence for the regional antiquity of this flora, we evaluated the proportion of these disjunct clades represented in the Australian fossil record, and to minimize the effects of biases in this record, we compared late Quaternary (i.e. late Pleistocene and Holocene, 126–0 ka), Pliocene and late Oligocene–early Miocene Australian pollen records interpreted as tropical rain forest. Using within‐species disjunctions as a proxy, we assessed the role of recent immigration from Asia into Australia. To assess the role of source–sink dynamics, we performed comparative analyses of disjunctions in major rain forest categories representing a north–south/climatic gradient. Results Southern Australian, cool temperate (microthermal) rain forests contain many floristic disjunctions with Gondwanan fragments and most of these clades have Gondwanan fossils. Disjunct clades in Australian mesothermal rain forest mostly occur in Asia/Malesia and a low proportion of these clades show pre‐Neogene records. Many clades in lowland tropical and ‘dry’ rain forest show disjunctions with Asia/Malesia and few have Australian fossil records. Rates of recent immigration from Asia/Malesia are high in these northern forests, and outweigh rates of recent emigration approximately nine‐fold. The late Quaternary fossil record has many more rain forest angiosperms than Oligocene–Miocene and Pliocene floras, consistent with extensive late Cenozoic immigration. Main conclusions The microthermal rain forests are largely Gondwanan relicts, but there is progressively greater, and more recent contribution from Asia/Malesia into more northern, and more lowland tropical rain forests. This variation reflects a strong gradient in geographic and ecological proximity between these forests and source floras in Asia/Malesia, and is consistent with a source–sink size model of immigration driven by late Cenozoic contractions and expansions of Australian rain forest.  相似文献   

7.
The fossil history of the Fagaceae from China and its systematic and biogeographic implications are discussed based on revisionary studies of the fossil records. No creditable macrofossil record of the Fagaceae exists in the Cretaceous deposits and all the Cretaceous microfossil reports remain equivocal and require further study. The Paleocene fossils show the appearance and diversification of the two groups corresponding to the subfamilies Fagoideae and Castaneoideae sensu Nixon. By the Eocene, all modern genera had been present. The oldest fagaceous fossils represent subfamily Fagoideae with affinities to the extant genus Trigonobalanus. The leaf fossil genus Berryophyllum, with affinities to Quercus subg. Cyclobalanopsis, has been documented by the early Eocene and might have occurred earlier than other fossils assignable to Quercus. The appearance of evergreen sclerophyllous Ouercus with entire leaves might have occurred earlier than those with toothed leaves. Deciduous, urticoid-leaved oak fossils (Quercus subg. Quercus sect. Quercus) had not appeared until the Miocene. Fossil equivalents of Trigonobalanus, Castanopsis and Lithocarpus had occurred in Europe and North America by the early Tertiary, suggesting that continuous distributions were achieved via the northern hemisphere land bridges. Three groups of evergreen sclerophyllous oaks of apparent close phylogenetic relationships occurred in the Hengduan mountains, the Mediterranean area and northwestern North America. Their fossil forms have become dominant elements of those vegetation zones since the Miocene. A shared fossil history indicates a possible biogeographic boundary formed by the ancient Mediterranean. The evidence suggests that the oaks might arrive in North America during two distinct geologic periods: evergreen sclerophyllous entire-leaved oaks appeared by the Early Tertiary, whereas thedeciduous oaks with urticoid leaves appeared in the Late Tertiary.  相似文献   

8.

Background

It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts.

Results

We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages.

Conclusion

Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-015-0290-8) contains supplementary material, which is available to authorized users.  相似文献   

9.
We describe lark (Alaudidae) fossils from the upper Pliocene of the Beregovaya (southern Transbaikalia) and Shaamar (northern Mongolia) localities. The presence of 4 extinct forms in these localities is established, including the new fossil horned lark Eremophila orkhonensis (Zelenkov et Kurochkin, 2012), comb. nov. This is the oldest member of Eremophila in the fossil record, indicating a possible Central Asian origin of the genus. Two other larks Alaudala aff. A. rufescens and Calandrella aff. C. brachydactyla also probably represent extinct forms. The paper describes in detail the osteology of larks and compares it with other passerines in its size class. The evolutionary history of Eremophila is discussed, and the environmental preferences of larks and their relationship to the late Pliocene landscapes of Central Asia are considered.  相似文献   

10.
《Comptes Rendus Palevol》2018,17(8):557-593
Valdavara 3 is a new early late Pleistocene paleontological and archeological cave site in northwestern Iberia. Over 1400 fossils have been collected, representing about 40 species. The fauna is of interglacial aspect and is in accordance with the OSL dates from the fossiliferous layer, which indicate an age of 103–113 ka. The great taxonomical diversity indicates a varied landscape. A small collection of lithic artifacts was found associated with the fossils, demostrating presence of humans and suggesting short non-residential visits to the cave. The fossiliferous site was predominantly formed by natural processes. Many fossil localities have short or biased faunal lists, but the fossil fauna recovered from Valdavara 3 is remarkably diverse and may reflect the fauna which once lived there.  相似文献   

11.
Ray‐finned fishes (Actinopterygii) dominate modern aquatic ecosystems and are represented by over 32000 extant species. The vast majority of living actinopterygians are teleosts; their success is often attributed to a genome duplication event or morphological novelties. The remainder are ‘living fossils’ belonging to a few depauperate lineages with long‐retained ecomorphologies: Polypteriformes (bichirs), Holostei (bowfin and gar) and Chondrostei (paddlefish and sturgeon). Despite over a century of systematic work, the circumstances surrounding the origins of these clades, as well as their basic interrelationships and diagnoses, have been largely mired in uncertainty. Here, I review the systematics and characteristics of these major ray‐finned fish clades, and the early fossil record of Actinopterygii, in order to gauge the sources of doubt. Recent relaxed molecular clock studies have pushed the origins of actinopterygian crown clades to the mid‐late Palaeozoic [Silurian–Carboniferous; 420 to 298 million years ago (Ma)], despite a diagnostic body fossil record extending only to the later Mesozoic (251 to 66 Ma). This disjunct, recently termed the ‘Teleost Gap’ (although it affects all crown lineages), is based partly on calibrations from potential Palaeozoic stem‐taxa and thus has been attributed to poor fossil sampling. Actinopterygian fossils of appropriate ages are usually abundant and well preserved, yet long‐term neglect of this record in both taxonomic and systematic studies has exacerbated the gaps and obscured potential synapomorphies. At the moment, it is possible that later Palaeozoic‐age teleost, holostean, chondrostean and/or polypteriform crown taxa sit unrecognized in museum drawers. However, it is equally likely that the ‘Teleost Gap’ is an artifact of incorrect attributions to extant lineages, overwriting both a post‐Palaeozoic crown actinopterygian radiation and the ecomorphological diversity of stem‐taxa.  相似文献   

12.
In this article we study the cranial remains of the late Lower Pleistocene human fossils from Gran Dolina (Sierra de Atapuerca, Spain), assigned to the new species Homo antecessor. The cranial remains belong to at least five individuals, both juveniles and adults. The most outstanding feature is the totally modern human morphology of the very complete face ATD6-69, representing the earliest occurrence of the modern face in the fossil record. The Gran Dolina fossils show in the face a suite of modern human apomorphies not found in earlier hominids nor in contemporary or earlier Homo erectus fossils. There are also traits in the Gran Dolina fossils shared with both Neandertals and modern humans, which reinforce the hypothesis that Neandertals and modern humans form a clade, and that the Gran Dolina fossils are a common ancestor to both lineages.  相似文献   

13.
Extant baleen whales (Cetacea, Mysticeti) are a disparate and species‐rich group, but little is known about their fossil record in the northernmost Atlantic Ocean, a region that supports considerable extant cetacean diversity. Iceland's geographical setting, dividing North Atlantic and Arctic waters, renders it ideally situated to shed light on cetacean evolution in this region. However, as a volcanic island, Iceland exhibits very little marine sedimentary exposure, and fossil whales from Iceland older than the late Pleistocene are virtually unknown. Here, we present the first fossil whale found in situ from the Pliocene Tjörnes Formation (c. 4.5 Ma), Iceland's only substantial marine sedimentary outcrop. The specimen is diagnosed as a partial skull from a large right whale (Mysticeti, Balaenidae). This discovery highlights the Tjörnes Formation as a potentially productive fossil vertebrate locality. Additionally, this find indicates that right whales (Eubalaena) and bowhead whales (Balaena) were sympatric, with broadly overlapping latitudinal ranges in the Pliocene, in contrast to the modern latitudinal separation of their living counterparts.  相似文献   

14.
Abstract Although pterosaurs are a well‐known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon‐specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased – this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.  相似文献   

15.
Fruits, catkins, and associated leaves of at least two extinct trigonobalanoid taxa have been discovered at an Oligocene fossil plant locality rich in fagaceous remains. These fossils exhibit a mosaic of fruit and pollen characters found in the two extant subfamilies Castaneoideae and Fagoideae of Fagaceae. Comparison with cladograms based on modern taxa suggests that these extinct taxa were similar to the ancestors of subfamily Fagoideae and may have been intermediate between Fagus and the modern trigonobalanoid genera. Pollen types isolated from the fossil staminate catkins provide unique character states that are transitional between modern pollen types in Fagaceae and are important in understanding the evolution of exine micromorphology within the family. This analysis provides a striking example of the use of character data from fossils to determine character-state adjacency prior to polarization of characters using outgroup comparison. Because of the mosaic nature of their character complexes, these fossils support monophyly in both the family Fagaceae and the subfamily Fagoideae. In addition, the occurrence of trigonobalanoid fossils in the Oligocene of North America has interesting biogeographic implications and provides insights into the nature of North American Fagaceae during the Tertiary.  相似文献   

16.
The fossil record of Lauraceae can be traced back to the Early Cretaceous of eastern Asia based on fossil flowers. Here, we refer a number of new occurrences of leaf and fruit fossils of Lauraceae from the Middle Miocene of Zhangpu, Fujian, China, to seven species. These data provide evidence supporting the fact that a diverse subtropical, or tropical, Lauraceae-dominated evergreen forest surrounded this region 15 million years ago (Mya). The Lauraceae fossils presented in this paper provide evidence for the evolution of this group as well as new materials that enable the study of the Fujian Province Neogene flora. The fossils described in this paper fill in the gaps in studies about Lauraceae pollen in the Middle Miocene from Fotan, Fujian, China. In addition, these fossils also enrich the Middle Miocene fossil records of Lauraceae in eastern Asia, especially improving the study of the macrostructures and reproductive organs of fossil Lauraceae from southern China. The similarity between fossil and modern fruits shows that during the Middle Miocene the fruit morphological of Lauraceae have changed very little. We also identify families where the fossils we report belong to their closest relatives and can be used to reconstruct the paleoenvironment of Fujian in the Middle Miocene.  相似文献   

17.
徐兆良 《Acta Botanica Sinica》2004,46(11):1276-1280
主要报道了釆自云南省昆明市海口马房村鞍山早寒武世筇竹寺组玉案山段澄江生物群中的叶状红藻-似红叶藻(新属、新种)(Paradelesseria sanguinea Xu,gen.et sp.Nov.)。通过比较形态学研究,探讨了该宏观化石藻类的分类归属与亲缘关系,进一步丰富了澄江生物群生物物种多样性的认识,并为研究早寒武世生物演化及其古环境提供了新的化石证据。同时,通过对现生红藻的比较研究,进一步证明了澄江生物群在云南海口地区发生于一个水深在30m以上的亚潮带和下潮间带的海水环境。  相似文献   

18.
Abstract: The fossil record of the Canidae in North‐western Africa begins near the Miocene–Pliocene boundary with a form close to Nyctereutes, a genus best known in the late Pliocene of Ahl al Oughlam. This site yields two other canids. Vulpes hassani sp. nov. is a small fox, probably ancestral to the modern V. rueppelli, recorded from the Middle Pleistocene onwards. Lupulella paralius sp. nov. is a primitive jackal that probably belongs to the clade of modern African jackals. In the middle Pleistocene, the most common canid is Lupulella mohibi sp. nov., remarkable by its Nyctereutes‐like dentition and primitive skull‐features. These are all endemic forms, but V. vulpes and C. aureus, of northern origin, appear in the course of the middle Pleistocene. Lycaon has a sparse record in the middle and late Pleistocene.  相似文献   

19.
Balaenopteroids (Balaenopteridae + Eschrichtiidae) are a diverse lineage of living mysticetes, with seven to ten species divided between three genera (Megaptera, Balaenoptera and Eschrichtius). Extant members of the Balaenopteridae (Balaenoptera and Megaptera) are characterized by their engulfment feeding behavior, which is associated with a number of unique cranial, mandibular, and soft anatomical characters. The Eschrichtiidae employ suction feeding, which is associated with arched rostra and short, coarse baleen. The recognition of these and other characters in fossil balaenopteroids, when viewed in a phylogenetic framework, provides a means for assessing the evolutionary history of this clade, including its origin and diversification. The earliest fossil balaenopterids include incomplete crania from the early late Miocene (7–10 Ma) of the North Pacific Ocean Basin. Our preliminary phylogenetic results indicate that the basal taxon, “Megaptera” miocaena should be reassigned to a new genus based on its possession of primitive and derived characters. The late late Miocene (5–7 Ma) balaenopterid record, except for Parabalaenoptera baulinensis and Balaenoptera siberi, is largely undescribed and consists of fossil specimens from the North and South Pacific and North Atlantic Ocean basins. The Pliocene record (2–5 Ma) is very diverse and consists of numerous named, but problematic, taxa from Italy and Belgium, as well as unnamed taxa from the North and South Pacific and eastern North Atlantic Ocean basins. For the most part Pliocene balaenopteroids represent extinct species and genera and reveal a greater degree of morphological diversity than at present. The Pleistocene record is very limited and, unfortunately, fails to document the evolutionary details leading to modern balaenopteroid species diversity. It is evident, however, that most extant species evolved during the Pleistocene. Morphological and molecular based phylogenies support two competing hypotheses concerning relationships within the Balaenopteroidea: (1) balaenopterids and eschrichtiids as sister taxa, and (2) eschrichtiids nested within a paraphyletic Balaenopteridae. The addition of fossil taxa (including a new Pliocene species preserving a mosaic of balaenopterid and eschrichtiid characters) in morphological and “total evidence” analyses, offers the potential to resolve the current controversy concerning the possible paraphyly of Balaenopteridae.  相似文献   

20.
《Palaeoworld》2016,25(1):104-115
Roses (Rosa, Rosaceae) are arguably the most admired ornamental plants in the world. Southwestern China is the center of diversity for many extant native species of Rosa and fossils found in this region are critical for understanding the evolution of this genus. Herein, we report a leaf fossil record with good preservation from the late Miocene of Yunnan Province. The opposite and odd-pinnate leaf is composed of seven elliptical leaflets, with close, crenulate, and regular marginal teeth. The stipules are lanceolate and adnate to the petiole. Additionally, the secondary veins are semicraspedodromous, showing the same venation pattern as most living Rosa species in southwestern China. On the basis of the extensive morphological comparisons, we propose a new species, R. fortuita T. Su et Z.K. Zhou n. sp. This is the first confirmed Rosa leaf fossil record in China, and the discovery of R. fortuita n. sp. indicates that Rosa existed in southwestern China by the late Miocene. It suggests that Rosa was distributed in subtropical or temperate forests and shared a similar ecological niche as Rosa in Europe during the Oligocene and Miocene. The modern diversification of Rosa in southwestern China is thought to have been closely associated with the continuous uplift of the Qinghai-Tibet Plateau since the late Miocene, creating complex topography and a variety of climate conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号