首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We describe a quantitative analysis of the genetic diversity of phenol-degrading potential in bacterial communities from laboratory-scale activated sludge. Genomic DNA extracted from activated sludge from two sequential batch reactors fed with synthetic sewage plus phenol was amplified using conserved primers for the major subunit of the phenol hydroxylase (LmPH) gene and used to generate clone libraries. Following phylogenetic analysis, 59 sequences containing a 470-bp fragment clustered into six distinct subgroups with a genetic distance of 8%, most likely representing ecologically relevant variants of the enzyme. Seven sets of primers were designed to target the six clusters and used to obtain quantitative information on the dynamics of LmPH gene diversity using real-time PCR assays throughout 9 months of bioreactors operation. Total LmPH gene copy number remained approximately steady in phenol-amended and control reactors. However, a significant increase in phenol-degrading activity in the phenol-amended sludge was accompanied by a parallel increase in LmPH gene diversity, suggesting that phenol degradation in the activated sludge depends on the combined activity of a number of redundant species.  相似文献   

2.
ABSTRACT: BACKGROUND: The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. RESULTS: The Archaea community was specialized and dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6-% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. CONCLUSIONS: The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge.  相似文献   

3.
Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post‐disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.  相似文献   

4.
污水生物处理系统的性能和稳定性与微生物群落结构和动态密切相关。通过深入了解活性污泥中微生物群落结构及其影响因素,有助于提高污水厂污染物的去除效果。在不同污水活性污泥处理系统中细菌群落主要以变形菌、绿弯菌、放线菌、厚壁菌和拟杆菌为功能菌群;活性污泥中寄居的大多数真菌来自于子囊菌门,还有少量担子菌门;古菌以产甲烷菌为主;而病毒中分布最广的噬菌体和致病性病毒是最主要的关注点。本文通过对相关文献分析及总结,综述了进水组成、不同处理工艺、参数(理化参数和运行参数)、地理位置和气候条件等环境因子对活性污泥中细菌、真菌、古菌以及病毒群落组成的影响,尽可能全面地介绍污水厂微生物群落多样性及其对环境因子的响应。同时,对未来研究方向进行探讨,以期能够为活性污泥中功能微生物的应用及调控提供理论和应用基础。  相似文献   

5.
The shotgun isotope array method has been proposed to be an effective new tool for use in substrate-specific microbe exploration without any prior knowledge of the community composition. Proof of concept was demonstrated by detection of acetate-degrading microorganisms in activated sludge and further verified by independent stable isotope probing (SIP).  相似文献   

6.
Examining the relationship between biodiversity and functional stability (resistance and resilience) of activated sludge bacterial communities following disturbance is an important first step towards developing strategies for the design of robust biological wastewater treatment systems. This study investigates the relationship between functional resistance and biodiversity of dominant bacterial taxa by subjecting activated sludge samples, with different levels of biodiversity, to toxic shock loading with cupric sulfate (Cu[II]), 3,5-dichlorophenol (3,5-DCP), or 4-nitrophenol (4-NP). Respirometric batch experiments were performed to determine the functional resistance of activated sludge bacterial community to the three toxicants. Functional resistance was estimated as the 30 min IC50 or the concentration of toxicant that results in a 50% reduction in oxygen utilization rate compared to a referential state represented by a control receiving no toxicant. Biodiversity of dominant bacterial taxa was assessed using polymerase chain reaction-terminal restriction fragment length polymorphism (PCR-T-RFLP) targeting the 16S ribosomal RNA (16S rRNA) gene. Statistical analysis of 30 min IC50 values and PCR-T-RFLP data showed a significant positive correlation (P < 0.05) between functional resistance and microbial diversity for each of the three toxicants tested. To our knowledge, this is the first study showing a positive correlation between biodiversity of dominant bacterial taxa in activated sludge and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading.  相似文献   

7.
The influence of diet and host specificity on the fecal microbiome of three adult dragonfly species, Pseudothemis zonata, Orthetrum lineostigma, and Orthetrum melania, was investigated. The fecal bacterial communities were analyzed using 16S rRNA gene sequencing, and stable isotope analysis was used to investigate their food sources. The results showed significant differences in the composition of fecal bacterial communities among the three species, with host specificity potentially playing a more important role than diet. The dominant phyla in the fecal bacterial communities of all three species were Firmicutes, Proteobacteria, and Bacteroidetes. The operational taxonomic units (OTUs), Shannon index, and phylogenetic diversity index were not significantly different among the three species, indicating that there were no major differences in the diversity of the fecal bacterial communities. The stable isotope analysis showed that the food sources were similar among the three species, being primarily small insects found near the aquatic habitats. However, the fecal bacterial communities of two closely related species, O. lineostigma and O. melania, were different despite their similar food sources. In contrast, the fecal bacterial communities of O. lineostigma and P. zonata were similar, despite the different food sources of these two species. Our findings suggest that host specificity and diet can influence the composition of the intestinal microbiome in these insects, but the degree of influence may depend on the specific host and environmental conditions.  相似文献   

8.
Aims:  To evaluate the use of Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR)-derived probes and primers to specifically detect bacterial strains in an activated sludge microbial community.
Methods and Results:  ERIC-PCR was performed on two phenol-degrading bacterial strains, Arthrobacter nicotianae P1-7 and Klebsiella sp. P8-14. Their amplicons were DIG labelled for use as probes and then hybridized with ERIC-PCR fingerprints. The results showed the distinct band patterns for both bacterial strains. Strain-specific PCR primers were designed based on the sequences of ERIC-PCR bands. The DNA of each of these strains was successfully detected from its mixture with activated sludge DNA, either by using their respective ERIC-PCR-based probes for hybridization or by using species-specific primers for amplification, with higher sensitivity by latter method.
Conclusions:  Two phenol-degrading bacterial strains were identified from a mixture of activated sludge by using ERIC-PCR-based methods.
Significance and Impact of the Study:  The study demonstrated that the bacteria, which have important functions in complex wastewater treatment microbial communities, could be specifically detected by using ERIC-PCR fingerprint-based hybridization or amplification.  相似文献   

9.
10.
为探究造纸废水活性污泥中微生物群落结构多样性以及对造纸废水处理效果的影响,利用Illumina MiSeq 高通量测序方法,分析在处理造纸废水过程中,同一运行阶段两个并联氧化沟内活性污泥的微生物群落与多样性组成。结果表明,系统中处理造纸废水的活性污泥在同一废水条件下微生物群落结构总体稳定,优势细菌为绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidota)、变形菌门(Proteobacteria)、Myxococcota、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)等。最重要的优势细菌类群为Chloroflexi,相对丰度占比为47.67%~48.22%,远远高于其他废水中Chloroflexi的占比,其中厌氧绳菌纲(Anaerolineae)是其主要成员,占比84.39%~88.34%,可针对性地去除造纸废水中的污染物。造纸废水活性污泥样品中存在大量特殊功能菌群,其在废水中污染物尤其是木质素的去除中发挥着重要作用。  相似文献   

11.
The relationship between the abundance of three functional genes and their corresponding biochemical reaction rates was investigated in several activated sludge and mill effluent microbial communities. Gene probes were prepared for two key denitrification genes (nirS and nirK) and for one nitrogen-fixation gene (nifH) and were validated using a variety of strains of known nir and nif genotype. ATP-based measures of viable cell numbers were used to provide total population sizes. In certain microbial communities (activated sludge enrichment cultures and multiple samples taken from the same mill primary clarifier), a strong correlation was observed between gene abundance and biochemical activity rates. However, when comparing several different nonenriched activated sludge bioreactors and separate primary clarifier microbial communities, the ratio of specific gene abundance to biochemical activity rates varied widely. These results suggest that in cases where a microbial community is not fully induced for a given biochemical activity or when very different communities are compared, quantitative gene probing can give a better measure of a community's potential to carry out the encoded function than can the relevant biochemical assay. However, the gene quantitation method employed here probably underestimated the true number of probed genes present in the microbial communities due to nirS and nifH genes in the communities having reduced DNA sequence similarity with the probes used.  相似文献   

12.
应用TGGE指纹图谱技术对两个曝气池细菌种群的动态变化及多样性进行了研究。每3d进行1次,共8个监测时期中同一曝气池活性污泥的16SrDNAV3-PCRTGGE指纹图谱基本一致,图谱间的相似性系数(Cs)为100%。同一曝气池不同位点活性污泥的TGGE指纹图谱也完全一致。功能不同曝气池活性污泥TGGE指纹图谱存在差异,Cs为83.3%。对TJ1活性污泥TGGE图谱中9条主要条带回收、扩增、克隆建库,每个条带选4个转化子进行序列分析,结果显示TGGE条带是由序列不同的片段组成。32个序列在97%的相似性下分成16个分类操作单元(OTU),14个OTU与GenBank中已登录的细菌种群的同源性≥97%,2个OTU的同源性为95%和94%。与10个OTU同源性较高的细菌类群是在活性污泥或污染环境分离或发现的,与8个OTU相似的细菌类群目前尚无法分离培养。  相似文献   

13.
Problems with deflocculation and solids separation in biological wastewater treatment systems are linked to fluctuations in physicochemical conditions. This study examined the composition of activated sludge bacterial communities in lab-scale sequencing batch reactors treating bleached kraft mill effluent, under transient temperature conditions (30 to 45 °C) and their correlation to sludge settleability problems. The bacterial community composition of settled and planktonic biomass samples in the reactors was monitored via denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Our analysis showed that settled biomass has a different community composition from the planktonic biomass (49 ± 7% difference based on Jaccard similarity coefficients; p < 0.01). During times of poor sludge compression, the settled and planktonic biomass became more similar. This observation supports the hypothesis that settling problems observed were due to deflocculation of normally settling flocs rather than the outgrowth of non-settling bacterial species.  相似文献   

14.
Wang X  Wen X  Yan H  Ding K  Zhao F  Hu M 《Bioresource technology》2011,102(3):2352-2357
To determine whether functional stability was correlated with a stable microbial community structure in a functionally stable pilot-scale wastewater treatment plant, bacterial communities in the system were monitored over a one-year period. Bacterial community dynamics was characterized by the terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes. During the study period, the effluent BOD concentrations were very stable, with the average BOD concentration below 10 mg/L. The effluent TN concentrations were always below 20 mg/L, except for the first 40 days. T-RFLP results showed that, during the test period, the bacterial community structures were not stable, with an average change rate (every 15 days) of 20.4% ± 11.2%. Based on Lorenz distribution curves, it was observed that 20% of the species corresponded with 40-77% of cumulative relative abundances. Results clearly revealed that, in the pilot-scale wastewater treatment plant, functional stability did not correlate with stable bacterial communities.  相似文献   

15.
Plants provide resources and shape the habitat of soil organisms thereby affecting the composition and functioning of soil communities. Effects of plants on soil communities are largely taxon‐dependent, but how different functional groups of herbaceous plants affect trophic niches of individual animal species in soil needs further investigation. Here, we studied the use of basal resources and trophic levels of dominating soil meso‐ and macrofauna using stable isotope ratios of carbon and nitrogen in arable fallow systems 3 and 14–16 years after abandonment. Animals were sampled from the rhizosphere of three plant species of different functional groups: a legume (Medicaco sativa), a nonlegume herb (Taraxacum officinale), and a grass (Bromus sterilis). We found virtually no consistent effects of plant identity on stable isotope composition of soil animals and on thirteen isotopic metrics that reflect general food‐web structure. However, in old fallows, the carbon isotope composition of some predatory macrofauna taxa had shifted closer to that of co‐occurring plants, which was particularly evident for Lasius, an aphid‐associated ant genus. Trophic levels and trophic‐chain lengths in food webs were similar across plant species and fallow ages. Overall, the results suggest that variations in local plant diversity of grassland communities may little affect the basal resources and the trophic level of prey consumed by individual species of meso‐ and macrofauna belowground. By contrast, successional changes in grassland communities are associated with shifts in the trophic niches of certain species, reflecting establishment of trophic interactions with time, which shapes the functioning and stability of soil food webs.  相似文献   

16.
Butyrate-degrading bacteria in four methanogenic sludges were studied by RNA-based stable isotope probing. Bacterial populations in the (13)C-labeled rRNA fractions were distinct from unlabeled fractions, and Syntrophaceae species, Tepidanaerobacter sp., and Clostridium spp. dominated. These results suggest that diverse microbes were active in butyrate degradation under methanogenic conditions.  相似文献   

17.
Jiang  Xiao-Tao  Ye  Lin  Ju  Feng  Li  Bing  Ma  Li-Ping  Zhang  Tong 《Applied microbiology and biotechnology》2018,102(21):9379-9388

Bacterial community in activated sludge (AS) is diverse and highly dynamic. Little is known about the mechanism shaping bacterial community composition and dynamics of AS and no study had quantitatively compared the contribution of abiotic environmental factors and biotic associations to the temporal dynamics of AS microbial communities with significantly different diversity. In this study, two full-scale sewage treatment plants (STPs) with distinct operational parameters and influent composition were sampled biweekly over 1 year to reveal the correlating factors to whole and sub-groups of AS bacterial community diversity and dynamics. The results show that the bacterial communities of the two STPs were entirely different and correlated with the influent composition and operating configurations. Bacterial associations represented by cohesion metrics and the environmental factor temperature were the primary correlated factors to the temporal bacterial community dynamics within each STP. The STP with high diversity and evenness could treat influent with higher suspended solid and a shorter sludge retention time, and was less correlated with environmental factors, implying the importance of diversity for AS system.

  相似文献   

18.
Beta diversity – the variation in species composition among spatially discrete communities – and sampling grain – the size of samples being compared – may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground‐foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.  相似文献   

19.
In recent years, PCR-based pyrosequencing of 16S rRNA genes has continuously increased our understanding of complex microbial communities in various environments of the Earth. However, there is always concern on the potential biases of diversity determination using different 16S rRNA gene primer sets and covered regions. Here, we first report how bacterial 16S rRNA gene pyrotags derived from a series of different primer sets resulted in the biased diversity metrics. In total, 14 types of pyrotags were obtained from two-end pyrosequencing of 7 amplicon pools generated by 7 primer sets paired by 1 of 4 forward primers (V1F, V3F, V5F, and V7F) and 1 of 4 reverse primers (V2R, V4R, V6R, and V9R), respectively. The results revealed that: i) the activated sludge exhibited a large bacterial diversity that represented a broad range of bacterial populations and served as a good sample in this methodology research; ii) diversity metrics highly depended on the selected primer sets and covered regions; iii) paired pyrotags obtained from two-end pyrosequencing of each short amplicon displayed different diversity metrics; iv) relative abundance analysis indicated the sequencing depth affected the determination of rare bacteria but not abundant bacteria; v) the primer set of V1F and V2R significantly underestimated the diversity of activated sludge; and vi) the primer set of V3F and V4R was highly recommended for future studies due to its advantages over other primer sets. All of these findings highlight the significance of this methodology research and offer a valuable reference for peer researchers working on microbial diversity determination.  相似文献   

20.
Current studies show that multispecies forests are beneficial regarding biodiversity and ecosystem functionality. However, there are only little efforts to understand the ecological mechanisms behind these advantages of multispecies forests. Bacteria are among the key plant growth-promoting microorganisms that support tree growth and fitness. Thus, we investigated links between bacterial communities, their functionality and root trait dispersion within four major European forest types comprising multispecies and monospecific plots. Bacterial diversity revealed no major changes across the root functional dispersion gradient. In contrast, predicted gene profiles linked to plant growth activities suggest an increasing bacterial functionality from monospecific to multispecies forest. In multispecies forest plots, the bacterial functionality linked to plant growth activities declined with the increasing functional dispersion of the roots. Our findings indicate that enriched abundant bacterial operational taxonomic units are decoupled from bacterial functionality. We also found direct effects of tree species identity on bacterial community composition but no significant relations with root functional dispersion. Additionally, bacterial network analyses indicated that multispecies forests have a higher complexity in their bacterial communities, which points towards more stable forest systems with greater functionality. We identified a potential of root dispersion to facilitate bacterial interactions and consequently, plant growth activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号