首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1994篇
  免费   157篇
  国内免费   3篇
  2023年   26篇
  2022年   13篇
  2021年   52篇
  2020年   30篇
  2019年   47篇
  2018年   66篇
  2017年   51篇
  2016年   83篇
  2015年   89篇
  2014年   114篇
  2013年   170篇
  2012年   179篇
  2011年   156篇
  2010年   105篇
  2009年   92篇
  2008年   125篇
  2007年   122篇
  2006年   105篇
  2005年   72篇
  2004年   69篇
  2003年   70篇
  2002年   63篇
  2001年   29篇
  2000年   31篇
  1999年   30篇
  1998年   13篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   16篇
  1991年   16篇
  1990年   12篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   11篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   4篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1966年   1篇
  1965年   1篇
  1962年   1篇
排序方式: 共有2154条查询结果,搜索用时 125 毫秒
1.
In this paper, we propose an adversary model to facilitate forensic investigations of mobile devices (e.g. Android, iOS and Windows smartphones) that can be readily adapted to the latest mobile device technologies. This is essential given the ongoing and rapidly changing nature of mobile device technologies. An integral principle and significant constraint upon forensic practitioners is that of forensic soundness. Our adversary model specifically considers and integrates the constraints of forensic soundness on the adversary, in our case, a forensic practitioner. One construction of the adversary model is an evidence collection and analysis methodology for Android devices. Using the methodology with six popular cloud apps, we were successful in extracting various information of forensic interest in both the external and internal storage of the mobile device.  相似文献   
2.
3.

Background  

NOL7 is a candidate tumor suppressor that localizes to a chromosomal region 6p23. This locus is frequently lost in a number of malignancies, and consistent loss of NOL7 through loss of heterozygosity and decreased mRNA and protein expression has been observed in tumors and cell lines. Reintroduction of NOL7 into cells resulted in significant suppression of in vivo tumor growth and modulation of the angiogenic phenotype. Further, NOL7 was observed to localize to the nucleus and nucleolus of cells. However, the mechanisms regulating its subcellular localization have not been elucidated.  相似文献   
4.
Abstract: The release of endogenous N -acetylaspartylglutamate (NAAG) from slices of rat cerebellum, striatum, and spinal cord upon depolarization with 50 m M K+ was investigated. NAAG in superfusates was prepurified using an ion exchanger, esterified, and then quantified by gas chromatography-mass spectrometry. Deuterated NAAG was used as internal standard. A depolarization-induced release of NAAG was found in all three regions. The release was Ca2+ dependent to over 85% in cerebellum and striatum, but only to approximately 70% in spinal cord. In addition, the effect of lesions of the olivocerebellar pathway on the K+-induced release of NAAG was studied: Treatment of the animals with 3-acetylpyridine reduced the release of NAAG from cerebellar hemispheres significantly, by about 40% compared with controls. These results suggest that part of the NAAG released from cerebellar slices on depolarization is related to climbing fibers. Implications of these findings concerning possible physiological roles of NAAG in the three CNS regions are discussed.  相似文献   
5.
Histone deacetylases (HDACs) have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E) in HDAC10 and leucine (L) in HDAC 11) based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M) mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E) mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.  相似文献   
6.
7.
Phospholipase D (PLD) regulates downstream effectors by generating phosphatidic acid. Growing links of dysregulation of PLD to human disease have spurred interest in therapeutics that target its function. Aberrant PLD expression has been identified in multiple facets of complex pathological states, including cancer and inflammatory diseases. Thus, it is important to understand how the signaling network of PLD expression is regulated and contributes to progression of these diseases. Interestingly, small molecule PLD inhibitors can suppress PLD expression as well as enzymatic activity of PLD and have been shown to be effective in pathological mice models, suggesting the potential for use of PLD inhibitors as therapeutics against cancer and inflammation. Here, we summarize recent scientific developments regarding the regulation of PLD expression and its role in cancer and inflammatory processes.  相似文献   
8.
In an experimental model of obesity and hyperglycemia in Drosophila melanogaster we studied the effect of diet modification and administration of metformin on systemic infection with Rhizopus, a common cause of mucormycosis in diabetic patients. Female Wt-type Drosophila flies were fed regular (RF) or high-fat diet (HFD; 30% coconut oil) food with or without metformin for 48 h and then injected with R. oryzae. Survival rates, glucose and triglyceride levels were compared between 1) normal-weight flies (RF), 2) obese flies (HFD), 3) obese flies fed with RF, 4) flies continuously on HFD + metformin, 5) flies fed on HFD + metformin, then transferred to RF, and 6) obese flies administered metformin after infection. Glucose levels were compared across groups of non-infected flies and across groups of infected flies. Survival was significantly decreased (P = 0.003) in obese flies, while post-infection glucose levels were significantly increased (P = 0.0001), compared to normal-weight flies. Diet and administration of metformin led to weight loss, normalized glucose levels during infection, and were associated with decreased mortality and tissue fungal burden. In conclusion, diet and metformin help control infection-associated hyperglycemia and improve survival in Drosophila flies with mucormycosis. Fly models of obesity bear intriguing similarities to the pathophysiology of insulin resistance and diabetes in humans, and can provide new insights into the pathogenesis and treatment of infections in obese and diabetic patients.  相似文献   
9.
The N‐degron pathway determines the half‐life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N‐terminal residue (N‐degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N‐degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N‐degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N‐degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N‐degron. The key determinants for α‐amino group recognition are conserved among all ClpS proteins, but the α3‐helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N‐degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N‐degron. A combination of the fine‐tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N‐degron selectivity of the plant ClpS protein.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号