首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB) in oil reservoirs, can be controlled through nitrate or nitrite addition. To assess the effects of this containment approach on corrosion, metal coupons were installed in up-flow packed-bed bioreactors fed with medium containing 8 mM sulfate and 25 mM lactate. Following inoculation with produced water to establish biogenic H2S production, some bioreactors were treated with 17.5 mM nitrate or up to 20 mM nitrite, eliminating souring. Corrosion rates were highest near the outlet of untreated bioreactors (up to 0.4 mm year–1). Nitrate (17.5 mM) eliminated sulfide but gave pitting corrosion near the inlet of the bioreactor, whereas a high nitrite dose (20 mM) completely eliminated microbial activity and associated corrosion. More gradual, step-wise addition of nitrite up to 20 mM resulted in the retention of microbial activity and localized pitting corrosion, especially near the bioreactor inlet. We conclude that: (1) SRB control by nitrate or nitrite reduction shifts the corrosion risk from the bioreactor outlet to the inlet (i.e. from production to injection wells) and (2) souring treatment by continuous addition of a high inhibitory nitrite dose is preferable from a corrosion-prevention point of view.  相似文献   

2.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

3.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

4.
Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions.  相似文献   

5.
Oxidation of acetate in salt marsh sediment was inhibited by the addition of fluoroacetate, and also by the addition of molybdate, an inhibitor of sulfate-reducing bacteria. Molybdate had no effect upon the metabolism of acetate in a freshwater sediment in the absence of sulfate. The inhibitory effect of molybdate on acetate turnover in the marine sediment seemed to be because of its inhibiting sulfate-reducing bacteria which oxidized acetate to carbon dioxide. Sulfide was not recovered from sediment in the presence of molybdate added as an inhibitor of sulfate-reducing bacteria, but sulfide was recovered quantitatively even in the presence of molybdate by the addition of the strong reducing agent titanium chloride before acidification of the sediment. Reduction of sulfate to sulfide by the sulfate-reducing bacteria in the sediment was only partially inhibited by fluoroacetate, but completely inhibited by molybdate addition. This was interpreted as showing the presence of two functional groups of sulfate-reducing bacteria—one group oxidizing acetate, and another group probably oxidizing hydrogen.  相似文献   

6.
Experiments with a Warburg respirometer showed that a sediment slurry consumed hydrogen from a hydrogen atmosphere, and this consumption was not due to the activity of methanogenic bacteria. The hydrogren uptake was inhibited by the addition of 20 mM molybdate. Further experiments with sediment slurry held in conical flasks under an atmosphere of nitrogen showed that hydrogen accumulated in the headspace when bacterial sulfate reduction was inhibited either by the addition of 20 mM molybdate or by low (<5 mM) sulfate concentrations in the slurry. Methanogenesis was stimulated in the presence of a hydrogen atmosphere or by the addition of 20 mM molybdate. The results confirmed that hydrogren was an important electron donor for sulfate-reducing bacteria present in the sediment. The stimulation of methanogenesis by molybdate could be explained in part by a competition for hydrogen between sulfate-reducing bacteria and hydrogen-metabolizing methanogenic bacteria, but competition for another common substrate, possibly acetate, could also be significant.  相似文献   

7.
The identification of bacteria in oil production facilities has previously been based on culture techniques. However, cultivation of bacteria from these often-extreme environments can lead to errors in identifying the microbial community members. In this study, molecular techniques including fluorescence in situ hybridization, PCR, denaturing gradient gel electrophoresis, and sequencing were used to track changes in bacterial biofilm populations treated with nitrate, nitrite, or nitrate + molybdate as agents for the control of sulfide production. Results indicated that nitrite and nitrate + molybdate reduced sulfide production, while nitrate alone had no effect on sulfide generation. No long-term effect on sulfide production was observed. Initial sulfate-reducing bacterial numbers were not influenced by the chemical treatments, although a significant increase in sulfate-reducing bacteria was observed after termination of the treatments. Molecular analysis showed a diverse bacterial population, but no major shifts in the population due to treatment effects were observed.  相似文献   

8.
Virgin cores and production fluids were obtained from seven wells, ranging in depth from 805 ft to 14 492 ft, and examined for the presence of sulfate-reducing bacteria (SRB) using Rosenfeld's sulfate-reducing medium modified by using crude oil in place of lactate. Cores from an additional six wells, ranging in depth from 1160 ft to 13 337 ft were tested for SRB using the modified Rosenfeld medium and API-sulfate-reducing medium. Produced waters from five of the six wells were tested also. All of the eleven produced water samples were positive for SRB while H2S production was not detected from the core samples.  相似文献   

9.
Sediments from a hydrocarbon-contaminated aquifer, where periodic shifts between sulfate reduction and methanogenesis occurred, were examined to determine whether the degradation of toluene under sulfate-reducing conditions depended on interspecies hydrogen transfer. Toluene degradation under sulfate-reducing conditions was inhibited by the addition of 5 mM sodium molybdate, but the activity was not restored upon the addition of an actively growing, hydrogen-using methanogen. Toluene degradation was not inhibited in microcosms where hydrogen levels were maintained at a level theoretically sufficient to inhibit toluene degradation if the process proceeded via interspecies hydrogen transfer. Finally, the addition of carbon monoxide, a potent inhibitor of hydrogenase activity, inhibited hydrogen but not toluene consumption in sulfate-reducing microcosms. These results suggest that toluene is degraded directly by sulfate-reducing bacteria without the involvement of interspecies hydrogen transfer. The sequence of experiments used to reach this conclusion could be applied to determine the role of interspecies hydrogen transfer in the degradation of a variety of compounds in different environments or under different terminal electron-accepting conditions.  相似文献   

10.
R Rabus  M Fukui  H Wilkes    F Widdle 《Applied microbiology》1996,62(10):3605-3613
A mesophilic sulfate-reducing enrichment culture growing anaerobically on crude oil was used as a model system to study which nutritional types of sulfate-reducing bacteria may develop on original petroleum constituents in oil wells, tanks, and pipelines. Chemical analysis of oil hydrocarbons during growth revealed depletion of toluene and o-xylene within 1 month and of m-xylene, o-ethyltoluene, m-ethyltoluene, m-propyltoluene, and m-isopropyltoluene within approximately 2 months. In anaerobic counting series, the highest numbers of CFU (6 x 10(6) to 8 x 10(6) CFU ml-1) were obtained with toluene and benzoate. Almost the same numbers were obtained with lactate, a substrate often used for detection of the vibrio-shaped, incompletely oxidizing Desulfovibrio sp. In the present study, however, lactate yielded mostly colonies of oval to rod-shaped, completely oxidizing, sulfate-reducing bacteria which were able to grow slowly on toluene or crude oil. Desulfovibrio species were detected only at low numbers (3 x 10(5) CFU ml-1). In agreement with this finding, a fluorescently labeled, 16S rRNA-targeted oligonucleotide probe described in the literature as specific for members of the Desulfovibrionaceae (suggested family) hybridized only with a small portion (< 5%) of the cells in the enrichment culture. These results are consistent with the observation that known Desulfovibrio species do not utilize aromatic hydrocarbons, the predominant substrates in the enrichment culture. All known sulfate-reducing bacteria which utilize aromatic compounds belong to a separate branch, the Desulfobacteriaceae (suggested family). Most members of this family are complete oxidizers. For specific hybridization with members of this branch, the probe had to be modified by a nucleotide exchange. Indeed, this modified probe hybridized with more than 95% of the cells in the enrichment culture. The results show that completely oxidizing, alkylbenzene-utilizing sulfate-reducing bacteria rather than Desulfovibrio species have to be considered in attempts to understand the microbiology of sulfide production in oil wells, tanks, and pipelines when no electron donors other than the indigenous oil constituents are available.  相似文献   

11.
The removal of carbon tetrachloride under sulfate reducing conditions was studied in an an aerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 μM, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon tetrachloride was also completely dechlorinated to unknown products. Gram-positive sulfate-reducing bacteria were involved in the reductive dechlorination of carbon tetrachloride to chloroform and dichloromethane since both molybdate, an inhibitor of sulfate reduction, and vancomycin, an inhibitor of gram-positive bacteria completely inhibited carbon tetrachloride transformation. Carbon tetrachloride transformation by these bacteria was a cometabolic process and depended on the input of an electron donor and electron acceptor (sulfate). The rate of carbon tetrachloride transformation by sulfate reducing bacteria depended on the type of electron donor present. A transformation rate of 5.1 nmol·ml-1·h-1 was found with ethanol as electron donor. At carbon tetrachloride concentrations higher than18 μM, sulfate reduction and reductive dechlorination of carbon tetrachloride decreased and complete inhibition was observed at a carbon tetrachloride concentration of 56.6 μM. It is not clear what type of microorganisms were involved in the observed partial complete dechlorination of carbon tetrachloride. Sulfate reducing bacteria probably did not play a role since inhibition of these bacteria with molybdate had no effect on the complete dechlorination of carbon tetrachloride. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Flooded packed-bed bioreactors, prepared by immobilizing four different species of acidophilic iron-oxidizing bacteria on porous glass beads, were compared for their ferric iron-generating capacities when operated in batch and continuous flow modes over a period of up to 9 months, using a ferrous iron-rich synthetic liquor and acid mine drainage (AMD) water. The bacteria used were strains of Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, a Ferrimicrobium-like isolate (TSTR) and a novel Betaproteobacterium (isolate PSTR), which were all isolated from relatively low-temperature mine waters. Three of the bacteria used were chemoautotrophs, while the Ferrimicrobium isolate was an obligate heterotroph. Greater biomass yields achievable with the Ferrimicrobium isolate resulted in greater iron oxidation efficiency in the newly commissioned bioreactor containing this bacterium, though long-term batch testing with organic carbon-free solution resulted in similar maximum iron oxidation rates in all four bioreactors. Two of the bioreactors (those containing immobilized L. ferrooxidans and Ferrimicrobium TSTR) were able to generate significantly lower concentrations of ferrous iron than the others when operated in batch mode. In contrast, when operated as continuous flow systems, the bioreactor containing immobilized PSTR was superior to the other three when challenged with either synthetic or actual AMD at high flow rates. The least effective bacterium overall was At. ferrooxidans, which has previously been the only iron-oxidizer used in the majority of reports describing ferric iron-generating bioreactors. The results of these experiments showed that different species of iron-oxidizing acidophiles have varying capacities to oxidize ferrous iron when immobilized in packed-bed bioreactors, and that novel isolates may be superior to well-known species.  相似文献   

13.
Thirty-five different standards of sulfate-reducing bacteria, identified by reverse sample genome probing and defined as bacteria with genomes showing little or no cross-hybridization, were in part characterized by Southern blotting, using 16S rRNA and hydrogenase gene probes. Samples from 56 sites in seven different western Canadian oil field locations were collected and enriched for sulfate-reducing bacteria by using different liquid media containing one of the following carbon sources: lactate, ethanol, benzoate, decanoate, propionate, or acetate. DNA was isolated from the enrichments and probed by reverse sample genome probing using master filters containing denatured chromosomal DNAs from the 35 sulfate-reducing bacterial standards. Statistical analysis of the microbial compositions at 44 of the 56 sites indicated the presence of two distinct communities of sulfate-reducing bacteria. The discriminating factor between the two communities was the salt concentration of the production waters, which were either fresh water or saline. Of 34 standards detected, 10 were unique to the fresh water and 18 were unique to the saline oil field environment, while only 6 organisms were cultured from both communities.  相似文献   

14.
Acidithiobacillus ferrooxidans was immobilized in poly(vinyl alcohol) (PVA) by a PVA–boric acid method, and spherical beads of uniform size were produced. Biooxidation of ferrous iron by immobilized cells was investigated in repeated batch culture and continuous operation in a laboratory scale packed-bed bioreactor. During repeated batch culture, the cell-immobilized gels were stable and showed high constant iron-oxidizing activity. In continuous operation in a packed-bed bioreactor, biooxidation of ferrous iron fits a plug-flow reaction model well. A maximum Fe2+ oxidation rate of 1.89 g l−1 h−1 was achieved at the dilution rate of 0.38 h−1 or higher, while no obvious precipitate was detected in the bioreactor.  相似文献   

15.
The periphyton of macrophytes had previously been identified as important spots for mercury methylation in the Amazon basin, but the microorganisms that facilitate methylation in such compartment are still to be identified. Here, bacteria were isolated from periphyton associated with Eichhornia crassipes and Polygonum densiflorum in Widdel and Pfennig medium and tested for mercury methylation with a stable isotope tracer technique using (198)HgCl, hydrogen sulfide production and molybdate inhibition. Three Pleomorphomona spp., one unidentified Deltaproteobacteria, two Klebsiella spp., and one Tolumonas sp. were isolated. All except Tolumonas sp. were able to methylate mercury (up to 5% of the (198)HgCl added) and produce up to 4 mM of H(2)S, while the Deltaproteobacteria was also able to demethylate methylmercury. Although these bacteria may not be as strong mercury methylators as sulfate-reducing bacteria, they have the potential to contribute to methylmercury accumulation in the system.  相似文献   

16.
Microbiological technology for the enhancement of oil recovery based on the activation of the stratal microflora was tested in the high-temperature horizons of the Kongdian bed (60 degrees C) of the Dagang oil field (China). This biotechnology consists in the pumping of a water-air mixture and nitrogen and phosphorus mineral salts into the oil stratum through injection wells in order to stimulate the activity of the stratal microflora which produce oil-releasing metabolites. Monitoring of the physicochemical, microbiological, and production characteristics of the test site has revealed large changes in the ecosystem as a result of the application of biotechnology. The cell numbers of thermophilic hydrocarbon-oxidizing, fermentative, sulfate-reducing, and methanogenic microorganisms increased 10-10 000-fold. The rates of methanogenesis and sulfate reduction increased in the near-bottom zone of the injection wells and of some production wells. The microbial oil transformation was accompanied by the accumulation of bicarbonate ions, volatile fatty acids, and biosurfactants in the formation waters, as well as of CH4 and CO2 both in the gas phase and in the oil. Microbial metabolites promoted the additional recovery of oil. As a result of the application of biotechnology, the water content in the production liquid from the test site decreased, and the oil content increased. This allowed the recovery of more than 14000 tons of additional oil over 3.5 years.  相似文献   

17.
The importance of hydrogenase activity to corrosion of steel was assessed by using mixed populations of sulfate-reducing bacteria isolated from corroded and noncorroded oil pipelines. Biofilms which developed on the steel studs contained detectable numbers of sulfate-reducing bacteria (104 increasing to 107/0.5 cm2). However, the biofilm with active hydrogenase activity (i.e., corrosion pipeline organisms), as measured by a semiquantitative commercial kit, was associated with a significantly higher corrosion rate (7.79 mm/year) relative to noncorrosive biofilm (0.48 mm/year) with 105 sulfate-reducing bacteria per 0.5 cm2 but no measurable hydrogenase activity. The importance of hydrogenase and the microbial sulfate-reducing bacterial population making up the biofilm are discussed relative to biocorrosion.  相似文献   

18.
In this study, the impact of dissolved oxygen concentrations oscillations on Corynebacterium glutamicum 2262 ΔldhA growth was studied experimentally and modeled. Aiming at this, a dedicated two-compartment scale down set-up composed of two interconnected aerobic/anaerobic stirred tank bioreactors was used. The mean residence time of bacteria in each compartment was modified by adapting circulation rates and culture volumes in each bioreactor and the resulting temporal ratio of aeration was calculated. The five growth kinetics were then modeled using an original kinetic model coupling Monod growth modeling and the Residence Time Distributions. Our study showed that the microbial growth rate and macroscopic yields were clearly linked to the temporal ratio of aeration, allowing the definition of simple but robust law for process scale-up purpose. It was also revealed that the model proposed precisely agreed with the experimental growth data, whatever the fractions of aeration time imposed experimentally.  相似文献   

19.
Microbiological technology for the enhancement of oil recovery based on the activation of the stratal microflora was tested in the high-temperature horizons of the Kongdian bed (60°C) of the Dagang oil-field (China). This biotechnology consists in the pumping of a water-air mixture and nitrogen and phosphorus mineral salts into the oil stratum through injection wells in order to stimulate the activity of the stratal microflora which produce oil-releasing metabolites. Monitoring of the physicochemical, microbiological, and production characteristics of the trial site has revealed large changes in the ecosystem as a result of the application of biotechnology. The cell numbers of thermophilic hydrocarbon-oxidizing, fermentative, sulfate-reducing, and methanogenic microorganisms increased 10–10000-fold. The rates of methanogenesis and sulfate reduction increased in the near-bottom zone of the injection wells and of some production wells. The microbial oil transformation was accompanied by the accumulation of bicarbonate ions, volatile fatty acids, and biosurfactants in the formation waters, as well as of CH4 and CO2 both in the gas phase and in the oil. Microbial metabolites promoted the additional recovery of oil. As a result of the application of biotechnology, the water content in the production liquid from the trial site decreased, and the oil content increased. This allowed the recovery of more than 14000 tons of additional oil over 3.5 years.  相似文献   

20.
Injection of up-flow packed-bed bioreactors with excess volatile fatty acids and limiting concentrations of nitrate and sulfate gave complete reduction of nitrate from 0 to 5.5 cm and complete or near-complete reduction of sulfate from 3.2 to 11.5 cm along the bioreactor flow path. Most of the biomass (85%) and most of the genes for nitrate reduction (narG, 96%; napA, 99%) and for sulfate reduction (dsrB, 91%) were present near the inlet (0–5.5 cm) of the 37-cm-long bioreactor. Microbial community analysis by a combination of denaturing gradient gel electrophoresis and pyrosequencing of 16S rRNA amplicons indicated that nitrate-reducing Arcobacter and Pseudomonas species were located from 0 to 3.2 cm and throughout, respectively. Desulfobulbus species were the main sulfate reducers present and acetotrophic methanogens of the genus Methanosaeta predominated at 20–37 cm. Overall, the results indicated a succession of microbial communities along the bioreactor flow path. In the absence of nitrate, the sulfate reduction zone moved nearer to the bioreactor inlet. The sulfide concentration in the bioreactor effluent was temporarily lowered after nitrate injection was re-started. Hence, the bioreactor sulfide output could be disrupted by pulsed, not by constant nitrate injection, as demonstrated also previously in a low-temperature oil field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号