首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Toll-like receptor (TLR) 3 and 4 mediate the expression of many genes, including NF-kappaB- and interferon-regulatory factor (IRF)-3/interferon (IFN)-inducible genes, in macrophages and dendritic cells (DCs) in response to their ligand stimuli, polyI:C and lipopolysaccharide (LPS). Toll-IL-1 receptor homology domain (TIR)-containing adapter molecule 1 (TICAM-1) facilitates expression of IFN-inducible genes via TLR3. Although MyD88 and Mal/TIRAP adapters function downstream of TLR4, they barely induce IFN-beta. In addition, DC maturation as well as IFN-beta induction are largely independent of MyD88 and Mal/TIRAP. TICAM-1 is the functional adapter for both TLR3 and TLR4 that induces type 1 IFN and MyD88-independent DC maturation. In LPS-mediated TLR4 activation, a complex of TICAM-1 and an additional TLR4-binding adapter serves as the adapter. We named this TLR4-TICAM-1-bridging adapter TICAM-2. Our results reveal the details of MyD88-independent pathways which separately recruit the distinct adapters downstream of TLR3 and TLR4 and variations of the TLR output are in part regulated by the two additional adapters in DCs.  相似文献   

2.
In response to microbial or environmental "danger" signals, represented by structural motifs not normally expressed by cells, Toll-like receptors mediate intracellular signaling that leads to inflammatory gene expression. In response to agonists, TLR aggregation enables the recruitment and/or activation of TLR-specific adapter molecules. To date, four adapter proteins have been identified: MyD88, TIRAP/Mal, TRIF/TICAM-1, and TIRP/TRAM/TICAM-2. The interaction of the different TLRs with distinct combinations of adapter molecules creates a platform to which additional kinases, transacting factors, and possibly other molecules are recruited, events that lead, ultimately, to gene expression. Given the rapidity with which such interactions have been described, we have attempted to summarize our current understanding of the adapters that are so essential for TLR signaling and provide a working model for future studies.  相似文献   

3.
MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.  相似文献   

4.
5.
Toll-like receptor 4 (TLR4) activates two distinct signaling pathways inducing production of proinflammatory cytokines or type I interferons (IFNs), respectively. MyD88 and TIRAP/Mal are essential adaptor molecules for the former but not for the latter pathway. In contrast, TRIF/TICAM-1 and TRAM/TICAM-2 are essential for both. TIRAP is a sorting adaptor molecule recruiting MyD88 to activated TLR4 in the plasma membrane. TRAM is thought to bridge between TLR4 and TRIF by physical association. Little is known, however, how TRAM interacts with TLR4 or with TRIF during LPS response. Here, we show that TRAM recruits TRIF to the plasma membrane. Moreover, LPS induces upregulation of TLR4-association with TRAM and their subsequent translocation into endosome/lysosome. The internalized signaling complex consisting of TLR4 and TRAM colocalizes with TRAF3, a signaling molecule downstream of TRIF, in endosome/lysosome. These results suggest that TLR4 activates TRIF-signaling in endosome/lysosome after relocation from the cell surface.  相似文献   

6.
7.
8.
MyD88, a Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR) or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.  相似文献   

9.
Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal) is an adapter protein that facilitates recruitment of MyD88 to TLR4 and TLR2 signaling complexes. We previously generated a library of cell-permeating TLR4 TIR-derived decoy peptides fused to the translocating segment of the Drosophila Antennapedia homeodomain and examined each peptide for the ability to inhibit TLR4 signaling (Toshchakov, V. Y., Szmacinski, H., Couture, L. A., Lakowicz, J. R., and Vogel, S. N. (2011) J. Immunol. 186, 4819-4827). We have now expanded this study to test TIRAP decoy peptides. Five TIRAP peptides, TR3 (for TIRAP region 3), TR5, TR6, TR9, and TR11, inhibited LPS-induced cytokine mRNA expression and MAPK activation. Inhibition was confirmed at the protein level; select peptides abolished the LPS-induced cytokine production measured in cell culture 24 h after a single treatment. Two of the TLR4 inhibitory peptides, TR3 and TR6, also inhibited cytokine production induced by a TLR2/TLR1 agonist, S-(2,3-bis(palmitoyloxy)-(2R,2S)-propyl)-N-palmitoyl-(R)-Cys-Ser-Lys(4)-OH; however, a higher peptide concentration was required to achieve comparable inhibition of TLR2 versus TLR4 signaling. Two TLR4 inhibitory peptides, TR5 and TR6, were examined for the ability to inhibit TLR4-driven cytokine induction in mice. Pretreatment with either peptide significantly reduced circulating TNF-α and IL-6 in mice following LPS injection. This study has identified novel TLR inhibitory peptides that block cellular signaling at low micromolar concentrations in vitro and in vivo. Comparison of TLR4 inhibition by TLR4 and TIRAP TIR-derived peptides supports the view that structurally diverse regions mediate functional interactions of TIR domains.  相似文献   

10.
Toll-like receptors (TLRs) activate a potent immunostimulatory response. There is clear evidence that overactivation of TLRs leads to infectious and inflammatory diseases. Recent biochemical studies have shown that the membrane-bound form of ST2 (ST2L), a member of the Toll-like/IL-1 receptor superfamily, negatively regulates MyD88-dependent TLR signaling pathways by sequestrating the adapters MyD88 and Mal (TIRAP). Specifically, ST2L attenuates the recruitment of Mal and MyD88 adapters to their receptors through its intracellular TIR domain. Thus, ST2L is a potent molecule that acts as a key regulator of endotoxin tolerance and modulates innate immunity. So far, the inhibitory mechanism of ST2L at the molecular level remains elusive. To develop a working hypothesis for the interactions between ST2L, TLRs (TLR1, 2, 4, and 6), and adapter molecules (MyD88 and Mal), we constructed three-dimensional models of the TIR domains of TLR4, 6, Mal, and ST2L based on homology modeling. Since the crystal structures of the TIR domains of TLR1, 2 as well as the NMR solution structure of MyD88 are known, we utilized these structures in our analysis. The TIR domains of TLR1, 2, 4, 6, MyD88, Mal and ST2L were subjected to molecular dynamics (MD) simulations in an explicit solvent environment. The refined structures obtained from the MD simulations were subsequently used in molecular docking studies to probe for potential sites of interactions. Through protein-protein docking analysis, models of the essential complexes involved in TLR2 and 4 signaling and ST2L inhibiting processes were developed. Our results suggest that ST2L may exert its inhibitory effect by blocking the molecular interface of Mal and MyD88 adapters mainly through its BB-loop region. Our predicted oligomeric signaling models may provide a basis for the understanding of the assembly process of TIR domain interactions, which has thus far proven to be difficult via in vivo studies.  相似文献   

11.
12.
13.
14.
15.
16.
TLRs are important sensors of the innate immune system that serve to identify conserved microbial components to mount a protective immune response. They furthermore control the survival of the challenged cell by governing the induction of pro- and antiapoptotic signaling pathways. Pathogenic Yersinia spp. uncouple the balance of life and death signals in infected macrophages, which compels the macrophage to undergo apoptosis. The initiation of apoptosis by Yersinia infection specifically involves TLR4 signaling, although Yersinia can activate TLR2 and TLR4. In this study we characterized the roles of downstream TLR adapter proteins in the induction of TLR-responsive apoptosis. Experiments using murine macrophages defective for MyD88 or Toll/IL-1R domain-containing adapter inducing IFN-beta (TRIF) revealed that deficiency of TRIF, but not of MyD88, provides protection against Yersinia-mediated cell death. Similarly, apoptosis provoked by treatment of macrophages with the TLR4 agonist LPS in the presence of a proteasome inhibitor was inhibited in TRIF-defective, but not in MyD88-negative, cells. The transfection of macrophages with TRIF furthermore potently promoted macrophage apoptosis, a process that involved activation of a Fas-associated death domain- and caspase-8-dependent apoptotic pathway. These data indicate a crucial function of TRIF as proapoptotic signal transducer in bacteria-infected murine macrophages, an activity that is not prominent for MyD88. The ability to elicit TRIF-dependent apoptosis was not restricted to TLR4 activation, but was also demonstrated for TLR3 agonists. Together, these results argue for a specific proapoptotic activity of TRIF as part of the host innate immune response to bacterial or viral infection.  相似文献   

17.
Members of the Toll-like receptor (TLR) family are essential players in activating the host innate immune response against infectious microorganisms. All TLRs signal through Toll/interleukin 1 receptor domain-containing adapter proteins. MyD88 adapter-like (Mal) is one such adapter that specifically is involved in TLR2 and TLR4 signaling. When overexpressed we have found that Mal undergoes tyrosine phosphorylation. Three possible phospho-accepting tyrosines were identified at positions 86, 106, and 187, and two mutant forms of Mal in which tyrosines 86 and 187 were mutated to phenylalanine acted as dominant negative inhibitors of NF-kappaB activation by lipopolysaccharide (LPS). Activation of THP-1 monocytic cells with the TLR4 agonist LPS and the TLR2 agonist macrophage-activating lipopeptide-2 induced phosphorylation of Mal on tyrosine residues. We found that the Bruton's tyrosine kinase (Btk) inhibitor LFM-A13 could block the endogenous phosphorylation of Mal on tyrosine in cells treated with macrophage-activating lipopeptide-2 or LPS. Furthermore, Btk immunoprecipitated from THP-1 cells activated by LPS could phosphorylate Mal. Our study therefore provides the first demonstration of the key role of Mal phosphorylation on tyrosine during signaling by TLR2 and TLR4 and identifies a novel function for Btk as the kinase involved.  相似文献   

18.
Anti-viral host defense harbors a variety of strategies to coup with viral infection. Recent findings suggested that Toll-like receptors (TLRs) and their signaling pathways involve type I IFN induction in response to virus-specific molecular patterns. TLR 3 and TLR 4 in myeloid dendritic cells (mDCs) recognize viral dsRNA and putative viral products, respectively, to induce IFN-beta via IRF-3 activation. On the other hand, TLR 7 and TLR 9 in plasmacytoid DCs (pDCs) induce IFN-alpha in response to their ligands, U/G-rich ssRNA and non-methylated CpG DNA. We identified TICAM-1 which is recruited to the cytoplasmic domain (designated TIR) of TLR 3 and allows to select the pathway to activation of IRF-3. We also identified TICAM-2 which binds TLR 4 and together with TICAM-1 activates IRF-3. TICAM-1 knockdown by RNAi supported the key role of TICAM-1 in IFN-beta induction. Hence, the IFN-beta induction in mDCs appears in part due to the function of TICAM-1. Viruses are known to activate kinases that directly activate IRF-3 inside the cells, and this pathway may merge with the TLR 3-TICAM-1 pathway. Here we review the relationship between the TLR 3-TICAM-1 pathway and viral infection.  相似文献   

19.
Toll-like receptors are a group of pattern-recognition receptors that play a crucial role in "danger" recognition and induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral dsRNA, resulting in the induction of the anti-viral molecule, IFN-β. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Previous studies have shown that the TLR adaptor, Mal/TIRAP, an activator of TLR4, inhibits TLR3-mediated IFN-β induction through a mechanism involving IRF7. In this study, we sought to investigate whether the TLR adaptor, MyD88, an activator of all TLRs except TLR3, has the ability to modulate TLR3 signaling. Although MyD88 does not significantly affect TLR3 ligand-induced TNF-α induction, MyD88 negatively regulates TLR3-, but not TLR4-, mediated IFN-β and RANTES production; this process is mechanistically distinct from that employed by Mal/TIRAP. We show that MyD88 inhibits IKKε-, but not TBK1-, induced activation of IRF3. In doing so, MyD88 curtails TLR3 ligand-induced IFN-β induction. The present study shows that while MyD88 activates all TLRs except TLR3, MyD88 also functions as a negative regulator of TLR3. Thus, MyD88 is essential in restricting TLR3 signaling, thereby protecting the host from unwanted immunopathologies associated with the excessive production of IFN-β. Our study offers a new role for MyD88 in restricting TLR3 signaling through a hitherto unknown mechanism whereby MyD88 specifically impairs IKKε-mediated induction of IRF3 and concomitant IFN-β and RANTES production.  相似文献   

20.
TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam(3)Cys-Ser-Lys(4), peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-beta expression: while TLR4 agonist induced the activation of IRF-3/IFN-beta pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-kappaB activation and NO production in microglia. Neutralizing Ab against IFN-beta attenuated TLR4-mediated microglial apoptosis. IFN-beta alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-beta, indicating that IFN-beta production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-beta, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-beta production, which may act as an apoptotic sensitizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号