首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We have undertaken a phenotypic approach in the mouse to identifying molecules involved in inner ear function by N-ethyl-N-nitrosourea mutagenesis followed by screening for new dominant mutations affecting hearing or balance. The pathology and genetic mapping of the first of these new mutants, tailchaser (Tlc), is described here. Tlc/+ mutants display classic behavioural symptoms of a vestibular dysfunction, including head-shaking and circling. Behavioural testing of ageing mice revealed a gradual deterioration of both hearing and balance function, indicating that the pathology caused by the Tlc mutation is progressive, similar to many dominant nonsyndromic deafnesses in humans. Based on scanning electron microscopy (SEM) studies, Tlc clearly plays a developmental role in the hair cells of the cochlea since the stereocilia bundles fail to form the characteristic V-shape pattern around the time of birth. By young adult stages, Tlc/+ outer hair bundles are grossly disorganised although inner hair bundles appear relatively normal by SEM. Increased compound action potential thresholds revealed that the Tlc/+ cochlear hair cells were not functioning normally in young adults. Similar to inner hair cells, the hair bundles of the vestibular hair cells also do not appear grossly disordered. However, all types of hair cells in the Tlc/+ inner ear eventually degenerate, apparently regardless of the degree of organisation of their hair bundles. We have mapped the Tlc mutation to a 12 cM region of chromosome 2, between D2Mit164 and D2Mit423. Based on the mode of inheritance and map location, Tlc appears to be a novel mouse mutation affecting both hair cell survival and stereocilia bundle development.  相似文献   

2.
Calcium-modulating cyclophilin ligand (Caml) is a ubiquitously expressed cytoplasmic protein that is involved in multiple signaling and developmental pathways. An observation in our laboratory of a protein-protein interaction between Caml and the cytoplasmic region of Cadherin23 led us to speculate that Caml might be important in the inner ear and play a role in the development and/or function of hair cells. To address this question, we generated a mouse line in which Caml expression was eliminated in Atoh1-expressing cells of the inner ear upon administration of tamoxifen. Tamoxifen was administered immediately after birth to neonates to assess the effect of loss of Caml in the inner ear during postnatal development. Hearing in treated animals was tested by auditory brain stem response (ABR) analysis and cochlear pathology was evaluated by light microscopy. Lack of Caml expression in the inner ear leads to severe loss of cochlear hair cells and complete deafness. Elucidating the role of Caml in the inner ear will aid our understanding of the molecular pathways important for auditory development and function.  相似文献   

3.
Synapses between cochlear nerve terminals and hair cells are the most vulnerable elements in the inner ear in both noise-induced and age-related hearing loss, and this neuropathy is exacerbated in the absence of efferent feedback from the olivocochlear bundle. If age-related loss is dominated by a lifetime of exposure to environmental sounds, reduction of acoustic drive to the inner ear might improve cochlear preservation throughout life. To test this, we removed the tympanic membrane unilaterally in one group of young adult mice, removed the olivocochlear bundle in another group and compared their cochlear function and innervation to age-matched controls one year later. Results showed that tympanic membrane removal, and the associated threshold elevation, was counterproductive: cochlear efferent innervation was dramatically reduced, especially the lateral olivocochlear terminals to the inner hair cell area, and there was a corresponding reduction in the number of cochlear nerve synapses. This loss led to a decrease in the amplitude of the suprathreshold cochlear neural responses. Similar results were seen in two cases with conductive hearing loss due to chronic otitis media. Outer hair cell death was increased only in ears lacking medial olivocochlear innervation following olivocochlear bundle cuts. Results suggest the novel ideas that 1) the olivocochlear efferent pathway has a dramatic use-dependent plasticity even in the adult ear and 2) a component of the lingering auditory processing disorder seen in humans after persistent middle-ear infections is cochlear in origin.  相似文献   

4.
研究探讨了内耳减压病豚鼠皮层听觉诱发电位阈值、耳蜗火棉胶切片、酶组织化学和透射电镜观察的变化。结果表明,豚鼠内耳减压病导致听力损失,耳蜗广泛的病理损害.毛细胞琥珀酸脱氢酶活性降低。提出了加压治疗内耳减压病时配合改善微循环、增加能量供应等见解。  相似文献   

5.
The cochlea of the mammalian inner ear contains three rows of outer hair cells and a single row of inner hair cells. These hair cell receptors reside in the organ of Corti and function to transduce mechanical stimuli into electrical signals that mediate hearing. To date, the molecular mechanisms underlying the maintenance of these delicate sensory hair cells are unknown. We report that targeted disruption of Barhl1, a mouse homolog of the Drosophila BarH homeobox genes, results in severe to profound hearing loss, providing a unique model for the study of age-related human deafness disorders. Barhl1 is expressed in all sensory hair cells during inner ear development, 2 days after the onset of hair cell generation. Loss of Barhl1 function in mice results in age-related progressive degeneration of both outer and inner hair cells in the organ of Corti, following two reciprocal longitudinal gradients. Our data together indicate an essential role for Barhl1 in the long-term maintenance of cochlear hair cells, but not in the determination or differentiation of these cells.  相似文献   

6.
7.
The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We explored the possibility of regenerating stereocilia in the noise-deafened guinea pig cochlea by cochlear inoculation of a viral vector carrying Atoh1, a gene critical for hair cell differentiation. Exposure to simulated gunfire resulted in a 60–70 dB hearing loss and extensive damage and loss of stereocilia bundles of both inner and outer hair cells along the entire cochlear length. However, most injured hair cells remained in the organ of Corti for up to 10 days after the trauma. A viral vector carrying an EGFP-labeled Atoh1 gene was inoculated into the cochlea through the round window on the seventh day after noise exposure. Auditory brainstem response measured one month after inoculation showed that hearing thresholds were substantially improved. Scanning electron microscopy revealed that the damaged/lost stereocilia bundles were repaired or regenerated after Atoh1 treatment, suggesting that Atoh1 was able to induce repair/regeneration of the damaged or lost stereocilia. Therefore, our studies revealed a new role of Atoh1 as a gene critical for promoting repair/regeneration of stereocilia and maintaining injured hair cells in the adult mammal cochlea. Atoh1-based gene therapy, therefore, has the potential to treat noise-induced hearing loss if the treatment is carried out before hair cells die.  相似文献   

8.
The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear—especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear.  相似文献   

9.
One of the greatest challenges in the treatment of inner-ear disorders is to find a cure for the hearing loss that is caused by the loss of cochlear hair cells or spiral ganglion neurons. The recent discovery of stem cells in the adult inner ear that are capable of differentiating into hair cells, as well as the finding that embryonic stem cells can be converted into hair cells, raise hope for the future development of stem-cell-based treatment regimens. Here, we propose different approaches for using stem cells to regenerate the damaged inner ear and we describe the potential obstacles that translational approaches must overcome for the development of stem-cell-based cell-replacement therapies for the damaged inner ear.  相似文献   

10.
Radiotherapy of individuals suffering with head & neck or brain tumors subserve the risk of sensorineural hearing loss. Here, we evaluated the protective effect of Aminothiol PrC-210 (3-(methyl-amino)-2-((methylamino)methyl)propane-1-thiol) on the irradiated inner ear of guinea pigs. An intra-peritoneal or intra-tympanic dose of PrC-210 was administered prior to receiving a dose of gamma radiation (3000 cGy) to each ear. Auditory Brainstem Responses (ABRs) were recorded one week and two weeks after the radiation and compared with the sham animal group. ABR thresholds of guinea pigs that received an intra-peritoneal dose of PrC-210 were significantly better compared to the non-treated, control animals at one week post-radiation. Morphologic analysis of the inner ear revealed significant inflammation and degeneration of the spiral ganglion in the irradiated animals not treated with PrC-210. In contrast, when treated with PrC-210 the radiation effect and injury to the spiral ganglion was significantly alleviated. PrC-210 had no apparent cytotoxic effect in vivo and did not affect the morphology or count of cochlear hair cells. These findings suggest that aminothiol PrC-210 attenuated radiation-induced cochlea damage for at least one week and protected hearing.  相似文献   

11.
12.
13.
The LKB1 gene, which encodes a serine/threonine kinase, was discovered to play crucial roles in cell differentiation, proliferation, and the establishment of cell polarity. In our study, LKB1 conditional knockout mice (Atoh1-LKB1-/- mice) were generated to investigate LKB1 function in the inner ear. Tests of auditory brainstem response and distortion product otoacoustic emissions revealed significant decreases in the hearing sensitivities of the Atoh1-LKB1-/- mice. In Atoh1-LKB1-/- mice, malformations of hair cell stereocilliary bundles were present as early as postnatal day 1 (P1), a time long before the maturation of the hair cell bundles. In addition, we also observed outer hair cell (OHC) loss starting at P14. The impaired stereocilliary bundles occurred long before the presence of hair cell loss. Stereociliary cytoskeletal structure depends on the core actin-based cytoskeleton and several actin-binding proteins. By Western blot, we examined actin-binding proteins, specifically ERM (ezrin/radixin/moesin) proteins involved in the regulation of the actin cytoskeleton of hair cell stereocilia. Our results revealed that the phosphorylation of ERM proteins (pERM) was significantly decreased in mutant mice. Thus, we propose that the decreased pERM may be a key factor for the impaired stereocillia function, and the damaged stereocillia may induce hair cell loss and hearing impairments. Taken together, our data indicates that LKB1 is required for the development and maintenance of stereocilia in the inner ear.  相似文献   

14.
Mutations in the type II transmembrane serine protease 3 (TMPRSS3) gene cause non-syndromic autosomal recessive deafness (DFNB8/10), characterized by congenital or childhood onset bilateral profound hearing loss. In order to explore the physiopathology of TMPRSS3 related deafness, we have generated an ethyl-nitrosourea-induced mutant mouse carrying a protein-truncating nonsense mutation in Tmprss3 (Y260X) and characterized the functional and histological consequences of Tmprss3 deficiency. Auditory brainstem response revealed that wild type and heterozygous mice have normal hearing thresholds up to 5 months of age, whereas Tmprss3(Y260X) homozygous mutant mice exhibit severe deafness. Histological examination showed degeneration of the organ of Corti in adult mutant mice. Cochlear hair cell degeneration starts at the onset of hearing, postnatal day 12, in the basal turn and progresses very rapidly toward the apex, reaching completion within 2 days. Given that auditory and vestibular deficits often co-exist, we evaluated the balancing abilities of Tmprss3(Y260X) mice by using rotating rod and vestibular behavioral tests. Tmprss3(Y260X) mice effectively displayed mild vestibular syndrome that correlated histologically with a slow degeneration of saccular hair cells. In situ hybridization in the developing inner ear showed that Tmprss3 mRNA is localized in sensory hair cells in the cochlea and the vestibule. Our results show that Tmprss3 acts as a permissive factor for cochlear hair cells survival and activation at the onset of hearing and is required for saccular hair cell survival. This mouse model will certainly help to decipher the molecular mechanisms underlying DFNB8/10 deafness and cochlear function.  相似文献   

15.
Huh SH  Jones J  Warchol ME  Ornitz DM 《PLoS biology》2012,10(1):e1001231
A large proportion of age-related hearing loss is caused by loss or damage to outer hair cells in the organ of Corti. The organ of Corti is the mechanosensory transducing apparatus in the inner ear and is composed of inner hair cells, outer hair cells, and highly specialized supporting cells. The mechanisms that regulate differentiation of inner and outer hair cells are not known. Here we report that fibroblast growth factor 20 (FGF20) is required for differentiation of cells in the lateral cochlear compartment (outer hair and supporting cells) within the organ of Corti during a specific developmental time. In the absence of FGF20, mice are deaf and lateral compartment cells remain undifferentiated, postmitotic, and unresponsive to Notch-dependent lateral inhibition. These studies identify developmentally distinct medial (inner hair and supporting cells) and lateral compartments in the developing organ of Corti. The viability and hearing loss in Fgf20 knockout mice suggest that FGF20 may also be a deafness-associated gene in humans.  相似文献   

16.
The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at approximately 2-6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL.  相似文献   

17.
18.
Most sensorineural hearing loss cases occur as a result of hair cell loss, which results in secondary degeneration of spiral ganglion neurons (SGNs). Substantial loss of SGNs reduces the benefit of cochlear implants, which rely on SGNs for transmitting signals to the central auditory centers. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) play essential roles in cochlear development and are required for SGN survival. Here we report that 7,8,3'-trihydroxyflavone (7,8,3'-THF), which is a small molecule agonist of tyrosine receptor kinase B (TrkB), promoted SGN survival with high potency both in vitro and in vivo. The compound protected the SGNs in a TrkB-dependent manner, as its effects on SGNs disappeared when the TrkB was blocked. Application of 7,8,3'-THF in the bulla of conditional connexin26 (cCx26)-null mice dramatically rescued SGNs in the applied ear compared to untreated control cochlea in the same animal. Our findings suggest that 7,8,3'-THF is a promising therapeutic agent protecting the SGNs from degeneration both in vitro and in vivo.  相似文献   

19.
治疗内耳疾病的主要困难之一是找到耳蜗毛细胞或者螺旋神经元丢失所导致的听力损失的治疗方法。本文讨论使用干细胞替代感觉细胞丢失为目的的几个治疗策略。作者最近在成年内耳中发现了可以分化为毛细胞的干细胞,发现了胚胎干细胞可在体外转化为毛细胞并表达毛细胞标记物。在动物模型中,成年内耳干细胞、神经干细胞和胚胎干细胞来源的前体细胞可分化成为毛细胞和神经细胞。本文将讨论使用干细胞再生损伤毛细胞的不同方法,介绍几种可行的动物模型,并讨论发展基于干细胞的细胞替代疗法治疗内耳损伤中存在的困难。  相似文献   

20.
Aminoglycosides (AG) are commonly prescribed antibiotics with potent bactericidal activities. One main side effect is permanent sensorineural hearing loss, induced by selective inner ear sensory hair cell death. Much work has focused on AG's initiating cell death processes, however, fewer studies exist defining mechanisms of AG uptake by hair cells. The current study investigated two proposed mechanisms of AG transport in mammalian hair cells: mechanotransducer (MET) channels and endocytosis. To study these two mechanisms, rat cochlear explants were cultured as whole organs in gentamicin-containing media. Two-photon imaging of Texas Red conjugated gentamicin (GTTR) uptake into live hair cells was rapid and selective. Hypocalcemia, which increases the open probability of MET channels, increased AG entry into hair cells. Three blockers of MET channels (curare, quinine, and amiloride) significantly reduced GTTR uptake, whereas the endocytosis inhibitor concanavalin A did not. Dynosore quenched the fluorescence of GTTR and could not be tested. Pharmacologic blockade of MET channels with curare or quinine, but not concanavalin A or dynosore, prevented hair cell loss when challenged with gentamicin for up to 96 hours. Taken together, data indicate that the patency of MET channels mediated AG entry into hair cells and its toxicity. Results suggest that limiting permeation of AGs through MET channel or preventing their entry into endolymph are potential therapeutic targets for preventing hair cell death and hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号