首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Plant invasions result in biodiversity losses and altered ecological functions, though quantifying loss of multiple ecosystem functions presents a research challenge. Plant phylogenetic diversity correlates with a range of ecosystem functions and can be used as a proxy for ecosystem multifunctionality. Laurentian Great Lakes coastal wetlands are ideal systems for testing invasive species management effects because they support diverse biological communities, provide numerous ecosystem services, and are increasingly dominated by invasive macrophytes. Invasive cattails are among the most widespread and abundant of these taxa. We conducted a three‐year study in two Great Lakes wetlands, testing the effects of a gradient of cattail removal intensities (mowing, harvest, complete biomass removal) within two vegetation zones (emergent marsh and wet meadow) on plant taxonomic and phylogenetic diversity. To evaluate native plant recovery potential, we paired this with a seed bank emergence study that quantified diversity metrics in each zone under experimentally manipulated hydroperiods. Pretreatment, we found that wetland zones had distinct plant community composition. Wet meadow seed banks had greater taxonomic and phylogenetic diversity than emergent marsh seed banks, and high‐water treatments tended to inhibit diversity by reducing germination. Aboveground harvesting of cattails and their litter increased phylogenetic diversity and species richness in both zones, more than doubling richness compared to unmanipulated controls. In the wet meadow, harvesting shifted the community toward an early successional state, favoring seed bank germination from early seral species, whereas emergent marsh complete removal treatments shifted the community toward an aquatic condition, favoring floating‐leaved plants. Removing cattails and their litter increased taxonomic and phylogenetic diversity across water levels, a key environmental gradient, thereby potentially increasing the multifunctionality of these ecosystems. Killing invasive wetland macrophytes but leaving their biomass in situ does not address their underlying mechanism of dominance and is less effective than more intensive treatments that also remove their litter.  相似文献   

2.
Modifications of the Illinois River and associated tributaries have resulted in altered hydrologic cycles and persistent river‐floodplain connections during the growing season that frequently impede the establishment of hydrophytic vegetation and have reduced value for migratory waterfowl and other waterbirds. To help guide floodplain restoration, we compared energetic carrying capacity for waterfowl in two wetland complexes along the Illinois River under different management regimes during 2012–2015. The south pool of Chautauqua National Wildlife Refuge (CNWR) was seasonally flooded due to a partial river connection and managed for moist‐soil vegetation. Emiquon Preserve was hydrologically isolated from the Illinois River by a high‐elevation levee and managed as a semipermanently flooded emergent marsh. Semipermanent emergent marsh management at Emiquon Preserve produced 5,495 energetic use‐days (EUD)/ha for waterfowl and other waterbirds across wetland cover types and years, and seasonal moist‐soil management at CNWR produced 6,199 EUD/ha in one of 4 years. At Emiquon Preserve, the aquatic bed cover type produced 9,660 EUD/ha, followed by 5,261 EUD/ha in moist‐soil, 1,398 EUD/ha in persistent emergent, 1,185 EUD/ha in hemi‐marsh, and 12 EUD/ha in open water cover types. At CNWR, the annual grass and sedge cover type produced 7,031 EUD/ha, followed by 5,618 EUD/ha in annual broadleaf and 1,305 EUD/ha in perennial grass cover types. Restoration of floodplain wetlands in isolation from frequent flood pulses during the growing season can produce hemi‐marsh and aquatic bed vegetation communities that provide high‐quality habitat for waterfowl and which have been mostly eliminated from large river systems in the Midwest, U.S.A.  相似文献   

3.
阐明水鸟栖息地利用与环境因子的关系有助于制定针对性的水鸟保护对策。本研究在2012~2013年冬季对崇明东滩鸟类栖息地优化区内越冬水鸟的种类、数量以及6种环境因子(植被面积比例、裸地面积比例、水深、地形变异、栖息地结构多样性和干扰)进行调查,以了解水鸟对人工湿地的栖息地利用及其影响因子。野外调查共记录到水鸟24种9 018只,其中优势种为斑嘴鸭(Anas poecilorhyncha)和绿头鸭(A.platyrhynchos);栖息地优化区内水鸟休息的个体数量占总数量的79.2%,这表明优化区是大多数水鸟的休息地,而小(Tachybaptus ruficollis)、白骨顶(Fulica atra)、黑水鸡(Gallinula chloropus)、白琵鹭(Platalea leucorodia)和黑脸琵鹭(P.minor)的觅食个体数量超过60%,说明优化区也为这些鸟类提供了觅食地。逐步回归分析表明,裸地面积比例是影响越冬水鸟种类分布的最主要因子;尽管游禽在地形变异较大、植被面积比例较低的区域数量较多,但在休息时游禽更偏好于裸地面积比例较高的区域,而涉禽休息时偏好于地形变异较大的区域。为增加栖息地优化区内的水鸟多样性,建议在优化区内种植水鸟可食的沉水植物以增加水鸟的食物资源,同时增加裸地面积比例和地形变异程度,更好地为水鸟提供栖息地。  相似文献   

4.
Natural freshwater wetlands are among the most threatened habitats on Earth. Effective wetland biodiversity conservation can not, however, be evaluated without fully understanding the roles of artificial waterbodies as refuges for water-dependent plants and animals. Waterbird assemblages were examined on 59 farm ponds in the Elgin and Caledon districts of the Western Cape, South Africa. This study examines the relationship between waterbird use and habitat characteristics of farm ponds. Patterns of temporal and spatial variation of waterbird species richness and abundance were quantified in relation to the habitat characteristics of each pond. Cluster analysis and multiple regression analyses identified surface area of the farm ponds as an important variable determining the presence and abundance of many waterbird species. Structural diversity in terms of vegetation in and around the ponds was especially important in determining their usage by waterbirds. These variables were evaluated in terms of creating a mosaic of habitat types (by varying vegetation structure and pond topography), which may be a useful way to enhance waterbird diversity at farm ponds. This study concludes that the high number of farm ponds in the transformed habitat matrix of the Western Cape plays an important role in conserving waterbirds.  相似文献   

5.
Understanding the environmental factors shaping wetland attractiveness for waterbirds is an important question in wetland ecology and for conservation purposes. However, detailed data from numerous North African wetlands, notably those situated in inland areas, are still lacking. Thus, the aim of this study was to identify the factors influencing wetland use by waterbirds wintering in one of such poorly known habitat systems, namely the Saharan wetland complex of Douz, in south-western Tunisia. Thirty-four waterbird species (20 wading birds and 14 waterfowl species) were found to winter in this area. Using discriminant function analyses, we found that wetland size was the unique variable discriminating between occupied and unoccupied sites for total waterbirds and wading birds, while waterfowl distribution was related to both wetland size and water depth. Wetland size also provided the strongest predictor of species richness of wading birds, waterfowl and total waterbirds. Overall, our findings highlight the importance of wetland size as a key factor determining the attractiveness of wetlands for waterbirds wintering in the Saharan wetland complex of Douz. The possible explanations of this wetland size effect are discussed.  相似文献   

6.
Proper management techniques on moist-soil wetlands provide methods for enhancement of established wetlands, restoration of former wetlands, and creation of new wetland habitat. These techniques also create suitable wetland habitat for non-breeding waterfowl and other wetland dependent species during winter. To understand moist-soil managed wetland vegetative patterns, aspects such as plant species distribution, reproductive strategy, seed bank composition and viability should be thoroughly characterized. We investigated soil seed bank potential of moist-soil managed wetlands on Richland Creek Wildlife Management Area, Texas to determine which treatment (i.e., drawdown or flooded) produced the most desirable moist-soil plants. A total of 27 species germinated, producing 3,731 and 3,031 seedlings in drawdown and flooded treatments, respectively. There were also differences in stem densities between treatments of desirable and non-desirable species. Drawdown treatments had more seedlings germinate than flooded treatments, validating the notion that drawdown treatments provide favorable conditions for seed germination. Drawdown and flooding techniques, when properly timed, will allow managers to drive and directly influence managed wetland plant communities based on seed bank composition and response to presence or absence of water during the germination period.  相似文献   

7.
Waterbirds are a globally-distributed, species-rich group of birds that are critically dependent upon wetland habitats. They can be used as ecosystem sentinels for wetlands, which as well as providing ecosystem services and functions essential to humans, are important habitats for a wide range of plant and animal taxa. Here we carry out the first global analysis of inland-breeding waterbird distributions using data from 471 waterbird species in 28 families to identify global areas of high waterbird diversity. First we identify the primary area of high diversity for all inland-breeding waterbird species to be in Eastern Africa. For globally threatened inland-breeding waterbirds, the area of highest diversity is in Eastern China. Second, we show that the current network of protected areas provides poor coverage for threatened waterbirds in Eastern and Central Asia, and Northern India. In contrast, there is a higher protected area coverage in most of Europe and Brazil. Targeting the specific areas that have the highest numbers of species and the poorest coverage of protected areas is vital for both waterbird and wetland conservation.  相似文献   

8.
Invasive plants, such as the hybrid cattail Typha × glauca, can reduce biodiversity and alter the ability of wetlands to provide critical ecosystem services, including nutrient cycling and carbon storage. Several approaches have been used to reduce Typha dominance and restore invaded wetlands, but long‐term studies assessing benefits of these restoration efforts are limited. A previous study demonstrated that aboveground harvesting of Typha × glauca stems and litter reduced Typha dominance 2 years post‐treatment in a Great Lakes coastal wetland. In the current study, we extended monitoring of experimental aboveground Typha harvest to 4 years post‐treatment and added assessments of treatment effects on soil nutrients, carbon emissions, and microbial community composition. Aboveground harvest treatment resulted in a dramatic reduction in Typha litter cover that persisted for 4 years, increased soil temperature, and increased abundance of the native plant genus Carex. However, aboveground harvest treatment did not significantly reduce Typha abundance, nor did it have significant effects on soil nutrient concentrations, carbon fluxes, or the taxonomic composition of soil microbial communities. We did observe differences in bacterial community composition between plots based on time since Typha invasion, which may indicate some legacy effects of Typha invasion. At the scale of this experiment (4 × 4 m plots), our results indicate that a single aboveground removal of Typha × glauca is not sufficient to restore a heavily invaded freshwater wetland ecosystem, and that periodic harvesting of Typha stems and litter may be required to maintain native plant abundance.  相似文献   

9.
Abstract: Common reed (Phragmites australis) forms dense stands with deep layers of residual organic matter that negatively affects plant diversity and possibly habitat use by wetland birds. We sought to determine whether seasonal relative abundance and species richness of birds varied among 3 habitat types in Great Lakes coastal wetland complexes recently invaded by common reed. We used fixed-distance point counts to determine species relative abundances and species richness in edge and interior locales within common reed, cattail (Typha spp.), and meadow marsh habitats of various sizes during 2 summers (2001 and 2002) and 1 autumn (2001) at Long Point, Lake Erie, Ontario, Canada. We found that total relative abundance and species richness of birds were greater in common reed habitat compared to cattail or meadow marsh habitats. However, we also found that relative abundance of marsh-nesting birds was greater in meadow marsh habitat than in cattail and common reed during summer. Lastly, we found that, irrespective of habitat type, habitat edges had higher total relative abundance and species richness of birds than did habitat interiors. Our results show that common reed provides suitable habitat for a diversity of landbirds during summer and autumn but only limited habitat for many marsh-nesting birds during summer. Based on these results, we recommend restoration of meadow marsh habitat through reduction of common reed in Great Lakes wetlands where providing habitat for breeding marsh-nesting birds is an objective. Managers also might consider reducing the size of nonnative common reed stands to increase edge effect and use by birds, possibly including wetland birds.  相似文献   

10.
Abstract: Conservation programs that facilitate restoration of natural areas on private land are one of the best strategies for recovery of valuable wetland acreage in critical ecoregions of the United States. Wetlands enrolled in the Conservation Reserve Enhancement Program (CREP) provide many ecological functions but may be particularly important as habitat for migrant and resident waterbirds; however, use of, and factors associated with use of, CREP wetlands as stopover and breeding sites have not been evaluated. We surveyed a random sample of CREP wetlands in the Illinois River watershed in 2004 and 2005 to quantify use of restored wetlands by spring migrating and breeding waterbirds. Waterbirds used 75% of wetlands during spring migration. Total use-day abundance for the entire spring migration ranged from 0 to 49,633 per wetland and averaged 6,437 ± 1,887 (SE). Semipermanent wetlands supported the greatest total number of use-days and the greatest number of use-days relative to wetland area. Species richness ranged from 0 to 42 (x̄ = 10.0 ± 1.5 [SE]), and 5 of these species were classified as endangered in Illinois. Density of waterfowl breeding pairs ranged from 0.0 pairs/ha to 16.6 pairs/ha (x̄ = 1.9 ± 0.5 [SE] pairs/ha), and 16 species of wetland birds were identified as local breeders. Density of waterfowl broods ranged from 0.0 broods/ha to 3.6 broods/ha and averaged 0.5 ± 0.1 (SE) broods/ha. We also modeled spring stopover use, waterbird species richness, and waterfowl reproduction in relation to spatial, physical, and floristic characteristics of CREP wetlands. The best approximating models to explain variation in all 3 dependent variables included only the covariate accounting for level of hydrologic management (i.e., none, passive, or active). Active management was associated with 858% greater use-days during spring than sites with only passive water management. Sites where hydrology was passively managed also averaged 402% greater species richness than sites where no hydrologic management was possible. Density of waterfowl broods was 120% greater on passively managed sites than on sites without water management but was 29% less on sites with active compared to passive hydrologic management. Densities of waterfowl broods also were greatest when ratios of open water to cover were 70:30. Models that accounted for vegetation quality and landscape variables ranked lower than models based solely on hydrologic management or vegetation cover in all candidate sets. Although placement and clustering of sites may be critical for maintaining populations of some wetland bird species, these factors appeared to be less important for attracting migrant waterbirds in our study area. In the context of restored CREP wetlands, we suggest the greatest gains in waterbird use and reproduction may be accomplished by emphasizing site-specific restoration efforts related to hydrology and floristic structure. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):654–664; 2008)  相似文献   

11.
城市化对杭州市湿地水鸟群落的影响研究   总被引:43,自引:3,他引:40  
1997年12月 ̄1998年11月,对杭州市区6类湿地179个术方中水鸟的分布和数量进行了调查,同时选取11个栖息地参数进行分析。以确定影响杭州市湿地水鸟群落的主要因子;并提出了城市化综合指数可作为衡量城市化的指标,进一步分析了城市化与杭州市湿地水鸟群落的关系。结果显示,除了食物、水质和水深等因素外,景观水平和干扰的因素(湿地的形状、周转建筑的比例、湿地的连通性、至市中心的距离、噪音、人的有形干扰  相似文献   

12.
崇明东滩抛荒鱼塘的自然演替过程对水鸟群落的影响   总被引:2,自引:0,他引:2  
人工湿地抛荒的现象普遍存在,但针对抛荒后的自然演替过程对水鸟群落影响的研究较少.于2007、2008、2011年对崇明东滩自然抛荒的人工鱼塘水鸟群落展开调查,探究抛荒后的自然演替过程对水鸟群落结构及不同水鸟类群的影响.3a累计观察到水鸟59种12819只,隶属6目12科.其中抛荒前最多,共53种11001只;抛荒第1年22种1673只;抛荒第4年最少,9种145只.鱼塘抛荒后水鸟种类和数量下降剧烈,物种多样性先上升再下降,均匀度逐年上升,优势度先下降再上升.方差分析结果表明,5个群落特征都存在极显著年度差异(P1<0.01;P2<0.01;P3<0.01;P4=0.003;P5<0.01).非参数检验结果表明,不同类群水鸟的种类和数量逐年下降趋势明显,且年际差异极显著.即抛荒后的自然演替过程对水鸟群落产生了不利影响.建议采取人工管理措施防止旱化,增加环境异质性,恢复水鸟群落多样性.  相似文献   

13.
Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.  相似文献   

14.
We studied the relationship between habitat characteristics and the use of wetlands by the waterbirds over 5 years in Manas National Park, Assam. Patterns of temporal and spatial variation in waterbird diversity, abundance and community composition were quantified in relation to eight wetland attributes. There were significant declines in majority of the waterbird species during the course of this study; carnivorous and omnivorous birds being the major sufferers. The waterbird communities exhibited both spatial and temporal shifts in distribution and community composition along with the shifts in their major food resources, and primary productivity of the wetlands did not appear to play a major role in these shifts. Our study also demonstrates that the observed declines in waterbird abundances were associated with declines in zooplankton and macroinvertebrate densities. Temporal changes in wetland size also played some roles in the waterbird decline and community composition.  相似文献   

15.
Colonial waterbirds have impacted forested island ecosystems throughout their breeding range, changing vegetation, and soil characteristics and bird communities. Our objectives were to (1) determine effects of three levels of colonial waterbird exclusion on overall vegetation diversity and growth, and survival of a candidate restoration species (black elderberry; Sambucus nigra canadensis); (2) investigate effects of different planting techniques on survival and growth of black elderberry; and (3) determine effects of waterbird colonization on soil chemistry. In 2012, we investigated effects of three levels of waterbird exclusion (none control plots [CON]; partial, which excluded waterbirds larger than gulls [PEX]; and full which excluded all waterbirds [FEX]) on bird use, existing vegetation growth and diversity, and survival of planted black elderberry on three islands in Door County, WI, Lake Michigan. In 2013, we evaluated survival of black elderberry established with four planting treatments within three waterbird exclusion treatments on two islands in 2013. We also compared soil chemistry characteristics between islands with and without nesting waterbirds for 2 years. Overall plant growth was greater in exclosures, but elderberry survival was similar among treatments. Soil replacement and weed suppression planting treatments did not affect survival, but generally increased overall elderberry biomass. Soil from nesting islands was more acidic and had greater nutrient concentrations than reference islands. Exclusion or removal of colonial nesting waterbirds from islands may improve overall vegetation growth, but successful restoration of woody vegetation may require significant soil manipulation and planting.  相似文献   

16.
We compared wintering bird communities and their habitats among three shoals at Jiuduansha, a newly-formed wetland in the Yangtze River estuary. The highest species richness and diversity were recorded in Shangsha, which is the highest shoal, and the highest abundance and lowest species diversity were recorded in Xiasha, which is the lowest shoal. Shangsha had the largest abundance of perching birds whereas Xiasha was the most abundant in waterbirds. Bird assemblages showed different associations with the different habitat types—perching birds were favored by reed (Phragmites australis) communities, shallow water foragers and dabbling ducks preferred sea-bulrush (Scirpus mariqueter) communities, and moist-soil foragers and gulls showed a preference for bare intertidal zones. All bird assemblages, however, avoided the smooth cordgrass (Spartina alterniflora) communities, which are dominated by an alien invasive plant. The composition of avian communities was related to habitat types at the three shoals. Our results suggest that the newly-formed tidelands can provide suitable habitats for waterbirds and that the lower tidelands can attract more waterfowl than the higher tidelands. Because the shoal with low species diversity could have exclusive bird species, conservation efforts should not concentrate only on the area with high species diversity. The estuarine wetlands should be considered as a whole when conservation strategies are designed. The alien invasive plant should, moreover, be effectively controlled, to provide suitable habitats for birds.  相似文献   

17.
Many artificial wetland constructions are currently underway worldwide to compensate for the degradation of natural wetland systems. Researchers face the responsibility of proposing wetland management and species protection strategies to ensure that constructed wetlands positively impact waterbird diversity. Nestedness is a commonly occurring pattern for biotas in fragmented habitats with important implications for conservation; however, only a few studies have focused on seasonal waterbird communities in current artificial wetlands. In this study, we used the nestedness theory for analyzing the annual and seasonal community structures of waterbirds in artificial wetlands at Lake Dianchi (China) to suggest artificial wetland management and waterbird conservation strategies. We carried out three waterbird surveys per month for one year to observe the annual, spring, summer, autumn, and winter waterbird assemblages in 27 lakeside artificial wetland fragments. We used the NeD program to quantify nestedness patterns of waterbirds at the annual and seasonal levels. We also determined Spearman partial correlations to examine the associations of nestedness rank and habitat variables to explore the factors underlying nestedness patterns. We found that annual and all four seasonal waterbird compositions were nested, and selective extinction and habitat nestedness were the main factors governing nestedness. Further, selective colonization was the key driver of nestedness in autumn and winter waterbirds. We suggest that the area of wetland fragments should be as large as possible and that habitat heterogeneity should be maximized to fulfill the conservation needs of different seasonal waterbirds. Furthermore, we suggest that future studies should focus on the least area criterion and that vegetation management of artificial wetland construction should be based on the notion of sustainable development for humans and wildlife.  相似文献   

18.
《Acta Oecologica》2002,23(3):213-222
Wetlands are key habitats connected physically and socially with processes occurring over a much wider territory. The biotic connection through dispersal mechanisms among wetlands is of primary importance to wetland management and policies. However, traditional wetland conservation approaches are based on the preservation of isolated sites considered to be of special importance (typically owing to their importance for concentrations of migratory waterbirds). Research linking local species richness and bird migration suggests that the effect of wetland loss on regional diversity might be much larger than what would be expected from direct habitat loss. Since the biotic connection among wetlands serviced by waterbirds appears to be more efficient within a limited range, the distribution of wetlands in space is a key aspect determining wetland connectedness even in the absence of direct hydrologic links. Protected areas should thus be defined with regard to waterfowl movements and waterbird migration as functional processes contributing to aquatic species migration and local species richness. This calls for a regional approach to wetland management within a continental context. This paper aims at defining an operational view of the dispersion function of wetlands and its implication for conservation policies. For this purpose, we examined the conservation policies of the Ramsar Convention (the international treaty that protects wetlands) and the European Union (as an example of relevant continental level policy-making) from the viewpoint of bird-mediated dispersal of aquatic organisms. We propose nine specific avenues for the inclusion of bird-mediated dispersal in the policy documents examined. Non-governmental organisations and other organisations working in waterbird conservation should also recognise the importance of their policies for aquatic biodiversity at broader levels and avoid compartmentalising their conservation activities.  相似文献   

19.
1. This study highlights the use of waterbird communities as potential measures of river and floodplain health at a landscape scale. 2. The abundance and diversity of a waterbird community (54 species) was measured over 15 trips with four aerial and three ground counts per trip on a 300-ha lake in arid Australia. 3. Aerial survey estimates of individual species were significantly less precise (SE/mean) than ground counts across two (11–100 and > 1000) out of four abundance classes of waterbirds: 0–10, 11–100, 101–1000 and > 1000. Standard error/mean as a percentage decreased with increasing abundance from about 60% for the lowest abundance class to 18% for the largest abundance class. 4. Aerial survey estimates were negatively biased for species in numbers of less than 10 and greater than 5000 but unbiased compared to ground counts for other abundance classes. Aerial surveys underestimated numbers of waterbirds by 50% when there were 40 000 waterbirds. Three ground counts found about seven more waterbird species than four aerial surveys. One ground count took about 150 times longer than two aerial surveys and cost 14 times more. 5. Regression models were derived, comparing aerial survey estimates to ground counts for 31 of 36 species for which there were sufficient data. Aerial survey estimates were unbiased for most of these species (67%), negatively biased for six species and positively biased for one species. Estimates were negatively biased in species that occurred in small numbers or that dived in response to the aircraft. 6. River system health encompasses the state of floodplain wetlands. Waterbirds on an entire wetland or floodplain may be estimated by aerial survey of waterbirds; this is a coarse but effective measure of waterbird abundance. Aerial survey is considerably less costly than ground survey and potentially provides a method for measuring river and floodplain health over long periods of time at the same scale as river management.  相似文献   

20.
Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号