首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. The aim of this study is to test the increased telomerase promoter activity for cancer gene therapy in adenovirus vector. We cloned the hTERT promoter in place of the SV40 promoter in the pGL3-contol vector to be increased by the SV40 enhancer sequences, resulting in strong expression of luc+ only in telomerase positive cancer cells. Then we transfected the constructed plasmid into a normal human cell line and several cancer cell lines. Through these experiments, we identified the selective and increased expression of the luciferase gene controlled by the hTERT promoter and the SV40 enhancer in the telomerase positive cancer cell lines. To investigate the possibility of utilizing the hTERT promoter and the SV40 enhancer in targeted cancer gene therapy, we constructed an adenovirus vector expressing HSV-TK controlled by the hTERT promoter and the SV40 enhancer for the induction of specific telomerase positive cancer cell death. NSCLC cells infected by Ad-hT-TK-enh were more significantly suppressed and induced apoptosis than those infected by Ad-hT-TK. Telomerase is activated in 80 approximately 90% of cancers, so adenovirus with increasing telomerase promoter activity might be used for targeted cancer gene therapy using suicide genes. These results show that the hTERT promoter and the SV40 enhancer might be used for targeted cancer gene therapy.  相似文献   

2.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor or stem cells. The aim of this study was to use increased telomerase promoter activity in small-cell lung cancer (SCLC) gene therapy. The hTERT promoter and Myc-Max response elements (MMRE) in pGL3-Control vector containing SV40 enhancer resulted in strong expression of the luciferase gene only in telomerase positive and myc overexpressing SCLC cell line but not in normal human cell line. To investigate the possibility of the utilization of the MMRE, hTERT promoter, and SV40 enhancer in targeted SCLC gene therapy, adenovirus vector expressing HSV-TK controlled by the MMRE, hTERT promoter, and SV40 enhancer for the induction of telomerase positive and myc-overexpressing cancer specific cell death was constructed. SCLC cells infected with Ad-MMRE-hT-TK-enh were significantly suppressed and induced apoptosis more than those of Ad-hT-TK or Ad-hT-TK-enh infected cells. Telomerase and c-myc are activated in 60 approximately 80% of SCLC, so the increased activity of telomerase promoter can be used for targeted SCLC gene therapy. These results show that the MMRE, hTERT promoter, and SV40 enhancer can be used in SCLC targeted cancer gene therapy.  相似文献   

3.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. The aim of this study is to test the increased telomerase promoter activity for cancer gene therapy in adenovirus vector. We cloned the hTERT promoter in place of the SV40 promoter in the pGL3-contol vector to be increased by the SV40 enhancer sequences, resulting in strong expression of luc+ only in telomerase positive cancer cells. Then we transfected the constructed plasmid into a normal human cell line and several cancer cell lines. Through these experiments, we identified the selective and increased expression of the luciferase gene controlled by the hTERT promoter and the SV40 enhancer in the telomerase positive cancer cell lines. To investigate the possibility of utilizing the hTERT promoter and the SV40 enhancer in targeted cancer gene therapy, we constructed an adenovirus vector expressing HSV-TK controlled by the hTERT promoter and the SV40 enhancer for the induction of specific telomerase positive cancer cell death. NSCLC cells infected by Ad-hT-TK-enh were more significantly suppressed and induced apoptosis than those infected by Ad-hT-TK. Telomerase is activated in 80~90% of cancers, so adenovirus with increasing telomerase promoter activity might be used for targeted cancer gene therapy using suicide genes. These results show that the hTERT promoter and the SV40 enhancer might be used for targeted cancer gene therapy.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Telomerase is a ribonucleoprotein complex the function of which is to add telomeric repeats (TTAGGG)(n) to chromosomal ends, and it is known to play an important role in cellular immortalization. Telomerase is highly active in most tumor cells, yet not in normal cells. As such, it may have possible applications in cancer gene therapy. Telomerase consists of two essential components, telomerase RNA template (hTR) and catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. We here tested the possibility of the utilization of the hTERT promoter in targeted cancer gene therapy. We cloned the hTERT promoter in the replace of the CMV promoter and sub-cloned HSV-TK gene to be controlled by hTERT gene promoter in adenovirus shuttle plasmid. Then we constructed recombinant adenovirus Ad-hT-TK, and infected them into normal and human gynecological cancer cell lines. Through these experiments, we identified the selective tumor specific cell death by Ad-hT-TK. Furthermore, FACS analysis and TUNEL assay suggests that the reduced viability is mediated through the induction of apoptosis, indicating that this approach may be a useful method for suppressing cancer growth in targeted cancer gene therapy. These results show that Ad-hT-TK could be used for gynecological cancer gene therapy.  相似文献   

11.
12.
13.
14.
15.
人端粒酶催化亚基hTERT基因启动子的克隆   总被引:13,自引:0,他引:13  
为了确定人端粒酶催化亚基 h TERT基因的启动子结构特征 ,采用 Panhandle PCR技术 ,从正常人外周血单核细胞基因组 DNA中扩增 h TERT基因 5′端上游旁侧序列 ,结果获得了 h TERT基因翻译起始位点上游 2 0 90 bp的基因组 DNA序列。序列分析表明 h TERT基因的启动子区域缺少典型真核启动子的核心元件 ( TATA box和 CAAT box) ,但含有多个已知转录因子蛋白结合的核心序列 ,如 E box及 Sp1核心序列。提示 h TERT基因的表达可能受特殊的转录因子调控 ,这些转录因子的激活可能与癌变细胞中 h TERT重新组成型表达有关  相似文献   

16.
17.
18.
19.
The ends of human chromosomes are protected from the degradation associated with cell division by 15-20 kb long segments of hexameric repeats of 5'-TTAGGG-3' termed telomeres. In normal cells telomeres lose up to 300 bp of DNA per cell division that ultimately leads to senescence; however, most cancer cells bypass this lifespan restriction through the expression of telomerase. hTERT, the catalytic subunit essential for the proper function of telomerase, has been shown to be expressed in approximately 90% of all cancers. In this study we investigated the hTERT inhibiting effects of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea catechins, in MCF-7 breast cancers cells and HL60 promyelocytic leukemia cells. Exposure to EGCG reduced cellular proliferation and induced apoptosis in both MCF-7 and HL60 cells in vitro, although hTERT mRNA expression was decreased only in MCF-7 cells when treated with EGCG. Furthermore, down-regulation of hTERT gene expression in MCF-7 cells appeared to be largely due to epigenetic alterations. Treatment of MCF-7 cells with EGCG resulted in a time-dependent decrease in hTERT promoter methylation and ablated histone H3 Lys9 acetylation. In conjunction with demethylation, further analysis showed an increase in hTERT repressor E2F-1 binding at the promoter. From these findings, we propose that EGCG is effective in causing cell death in both MCF-7 and HL60 cancer cell lines and may work through different pathways involving both anti-oxidant effects and epigenetic modulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号