首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The amino acid requirements of strain L-M mouse cells grown in a chemically defined medium (2×Eagle) containing only the 13 essential amino acids (EAA) were investigated. Medium and acid hydrolysate samples were analyzed for amino acid content by the method of ion exchange chromatography. The extent of utilization of the EAA differed;e.g. after 120 hr of cell growth without medium change, glutamine was exhausted from the medium; methionine, leucine, isoleucine, cystine, arginine, and valine were depleted 60 to 80%; other EAA were used to lesser extents. Although the EAA were used in excess of their requirements for protein synthesis, a correlation could generally be made between utilization and protein amino acid composition. Glutamine appeared to be, a growth-limiting factor. Use of U-14C-labeled glutamine indicated that over one-half of the metabolized glutamine was converted to carbon dioxide, 17% to cell material, and 15% was extracted from the amino acid pools. Nonessential amino acids (NEAA), viz. alanine, aspartic acid, glutamic acid, glycine, proline, and serine, were released into the medium during growth, and some were reutilized. Exogenous provision of these did not improve cell growth. In contrast to the other NEAA, only serine showed net utilization when provided exogenously. When glutamic acid largely replaced the glutamine in the medium, it exerted a sparing effect on the glutamine requirement for protein synthesis. Suggestions are given for the improvement of Eagle medium for cell growth. Supported by Research Grants CA 03720 and CA 11802 from the National Institutes of Health. Predoctoral, fellow supported, by Grant F01-GM-42156-02 from the National Institutes of Health.  相似文献   

2.
A study was conducted over a 84-day period to evaluate glycine, L-glutamic acid and L-glutamine as sources of non-essential amino acids (NEAA) in dietary 'protein' consisting of crystalline amino acids only. The study was performed with a total of 1200 rainbow trout fingerlings ( Oncorhynchus mykiss ) of 48 g mean body mass. The addition of non-essential amino acids (NEAA) to essential amino acids (EAA) evidently improved growth and feed efficiency: glutamine was superior to glycine and glycine superior to glutamic acid. However, the best results in growth were obtained by adding a mixture of all three NEAA. The improvement of trout performance by glutamine may hypothetically be traced back to a better amino acid absorption capacity by a less acidic intestinal milieu. In consequence, the optimal EAA to NEAA ratio may have to be redefined.  相似文献   

3.
We studied the amino acid and lipid dynamics during embryogenesis of Homarus gammarus. Major essential amino acids (EAA) in the last stage of embryonic development were arginine, lysine and leucine; major nonessential amino acids (NEAA) were glutamic acid, aspartic acid, valine and glycine. The highest percent of utilization occurred in respect to EAA (27.8%), mainly due to a significant decrease (p<0.05) of methionine (38.3%) and threonine (36.0%). NEAA also decreased significantly (p<0.05, 11.4%), namely serine (38.1%), tyrosine (26.4%) and glutamic acid (25.7%). In contrast, the free amino acid content increased significantly (p<0.05) during embryonic development, especially the free nonessential amino acids (FNEAA). In the last stage, the most abundant FNEAA were glycine, proline, alanine and taurine, and the major free essential amino acids (FEAA) were arginine, lysine and leucine. Lipid content decreased significantly (p<0.05) during embryonic development. A substantial decrease in all neutral lipid classes was observed (>80% of utilization). Major fatty acids were 16:0, 18:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:5n-3 and 22:6n-3. Unsaturated (UFA) and saturated fatty acids (SFA) were used up at similar rates (76.5% and 76.3%, respectively). Within UFA, monounsaturates (MUFA) were consumed more than polyunsaturates (PUFA) (82.9% and 67.5%, respectively).  相似文献   

4.
R. Rosa  M. L. Nunes 《Hydrobiologia》2005,537(1-3):207-216
The present work describes the seasonal changes in nucleic acid concentrations and amino acid profiles in the muscle of juvenile Parapenaeus longirostris and their relation to growth and nutritional condition. RNA content varied significantly between seasons, being the highest values attained in spring and the lowest in winter (p < 0.05). Similar results were obtained with RNA:protein and RNA:DNA ratios. In respect to total amino acid content (TAA), a significant increase from winter to spring was observed (p < 0.05) and the major essential amino acids (EAA) were arginine, histidine and leucine. Within non-essential amino acids (NEAA) glutamic acid, aspartic acid, glycine and proline were dominant. From winter to spring, a significant variation in NEAA content occurred (26.8; p < 0.05), mainly due to the significant increase of glutamic acid (79.1) and serine (66.7) (p < 0.05). EAA content did not vary significantly between seasons (p > 0.05). In opposition, during this period a significant decrease in the free amino acid content (FAA) was observed (p < 0.05); a higher percentage of decrease was attained in free non-essential (FNEAA – 42.9) in comparison to free essential amino acids (FEAA – 40.2). The significant increase in RNA and TAA contents from winter to spring may be related with protein synthesis. On the other hand, the lowest values obtained in winter may be due to a reduction in feeding activity; in this period the muscle protein must be progressively hydrolysed, which is evident with the higher FAA content. The liberated amino acids enter FAA pool and become available for energy production. In conclusion, it was evident that the seasonal cycle in activities such as feeding and growth with nucleic acids and amino acid analyses was noticed.  相似文献   

5.
Extracellular glutathione (GSH) is degraded by an external cell-surface enzyme, γ-glutamyltranspeptidase (γ-GT). The products are transported into cells to participate in important cellular processes. In the present study, we tested the hypothesis that extracellular GSH is a source of glutamic acid for cells that express γ-GT. Under a glutamine-deficient culture condition, the extracellular GSH-supplemented glutamic acid would enhance intracellular glutamine synthesis, thereby stimulating cell proliferation. Human lung carcinoma A549 cells were cultured in glutamine-deficient Dulbecco's modified Eagle medium, and they did not proliferate unless glutamine was supplemented. Extracellular GSH, however, provoked a partial proliferation. The GSH effect correlated with a high level of γ-GT activity and an increased intracellular level of glutamic acid. A constituent amino acid of GSH, glutamic acid but not cysteine, produced the same growth-stimulatory effect as GSH. Furthermore, neither oxothiazolidine-4-carboxylate (OTC), a celluar cysteine-delivery compound, nor cysteinylglycine, a dipeptide released from the γ-GT reaction, stimulated cell proliferation. Moreover, buthionine sulfoximine (BSO), a selective inhibitor of γ-glutamylcysteine synthetase, enhanced the GSH growth stimulatory effect, suggesting that increased cellular GSH synthesis does not correlate with cell growth stimulation. The results obtained demonstrated that glutamine is required for A549 cell proliferation and exogenous GSH partially substitutes for the growth stimulatory action of glutamine. It also suggests that the glutamic acid rather than the cysteine released from the GSH is responsible for the cell proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

6.
We have previously demonstrated that feeding a diet with a high amino acid (60% AA diet) content, as a mixture simulating casein, induced pancreatic growth and pancreatic protease production in rats. In the present study, we examined the effects of an increasing dietary content of essential amino acids (EAA, x1 - x3 in exp. 1 and x1 - x3.3 in exp. 2) and non-essential amino acids (NEAA, x1 - x3 in exp. 1 and x1 - x5.2 in exp. 2) on pancreatic growth, amylase and protease adaptation using casein-type amino acid mixtures (exp. 1, basal diet; 20% AA diet) and egg white-type amino acid mixtures (exp. 2, basal diet; 12% AA diet). Pancreatic growth and trypsin activity were induced as the dietary content of NEAA was increased in experiments 1 and 2. Amylase activity in the pancreas was also induced as the dietary content of NEAA was increased, even with the decrease in dietary carbohydrate in experiment 2. The values of all pancreatic variables decreased with the increase in dietary EAA (x2 and x3) without an increase in NEAA. The changes in the pancreas were coincident with increases in plasma arginine and lysine concentrations and a decrease in the plasma alanine concentration. In rats fed a 60% AA diet (EAA and NEAA x3), in the case of which the EAA content was balanced with the NEAA content, pancreatic growth and protease production increased and reached maximum levels as the plasma amino acid concentrations decreased, except for alanine. These results show that NEAA, not EAA, are associated with induction of pancreatic growth and protease production upon feeding a diet with a high AA content, and that some metabolites may be involved in the induction process. The suppression of pancreatic growth and protease production in rats fed the high EAA diets without balanced NEAA may be associated with impairment of amino acid metabolism rather than the increments in the concentration of one or more essential amino acids. Our results also suggest that there is an unknown mechanism or unknown factors involved in regulating pancreatic amylase.  相似文献   

7.
The media, in which a butterfly cell line (Px 58), derived from pharate adult ovaries of Papilio xuthus cultured for 8 days, were analysed to examine the changes in free amino acids in the medium during cultivation. Beta-alanine, arginine, glycine, histidine, lysine, phenylalanine, proline, serine, and tryptophan did not change markedly. Asparagine, aspartic acid, cystine, glutamine, isoleucine, leucine, methionine, threonine, tyrosine, and valine decreased to some extent with culturing. Alpha-alanine increased markedly, and glutamic acid did so to a lesser extent. Requirements of amino acids by the cell line were examined by deleting amino acids one at a time. Deletion of alpha-alanine, beta-alanine, asparagine, glutamic acid, glycine, and phenylalanine did not cause deterioration of the cell. These amino acids were thought to be non-essential or required only a little. Deletion of other amino acids impaired the cell growth severely. These amino acids would appear to be essential for growth of the Px 58 cell line.  相似文献   

8.
Amino acids are necessary for the survival, growth, development, reproduction and health of all organisms. They were traditionally classified as nutritionally essential or non-essential for mammals, birds and fish based on nitrogen balance or growth. It was assumed that all “non-essential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and health. However, there has been no compelling experimental evidence to support this assumption over the past century. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and protect its mucosal integrity. Therefore, based on new research findings, NEAA should be taken into consideration in revising the classical “ideal protein” concept and formulating balanced diets to improve protein accretion, food efficiency, and health in animals and humans.  相似文献   

9.
10.
Summary The fibrinopeptides A and B from gorilla, organgutan and siamang have been characterized, thereby completing a study of all six extant hominoids. The gorilla peptides were identical with the corresponding fibrinopeptides previously reported for human and chimpanzee. The orangutan peptide A was also identical with the human-chimpanzee-gorilla type A, but its fibrinopeptide B had two amino acid differences. The siamang A peptide differed from the others in one of its sixteen residues, but its peptide B was identical with the orangutan B. A cladogram based on the fibrinopeptide sequences of all six hominoids indicates that five amino acid replacements and one deletion can account for the evolution of present day sequences. It was also possible to deduce the amino acid sequence of the fibrinopeptides of the common ancestor of Old World monkeys and hominoids.Abbreviations Used PITC phenylisothiocyanate - DNS dimethylaminonaphthalene sulfonyl- - PCA pyrrolidone carboxylic acid - ASP aspartic acid - ASN asparagine - THR threonine - SER serine - GLU glutamic acid - GLN glutamine - GLY glycine - ALA alanine - VAL valine, ILE isoleucine - LEU leucine - PHE phenylalanine Supported by grants from the National Science Foundation (GB 7332) and the National Institutes of Health (GM-17, 702 and HE-12, 759).  相似文献   

11.
Hong JY  Yong HY  Lee BC  Hwang WS  Lim JM  Lee ES 《Theriogenology》2004,62(8):1473-1482
This study was conducted to develop a serum-free, defined medium for IVM of pig oocytes. Modified North Carolina State University (mNCSU)-23 media with or without supplementation with both epidermal growth factor (EGF) and gonadotrophin were used as base media. In separate experiments, each base medium was supplemented with porcine follicular fluid (pFF), polyvinyl alcohol (PVA), PVA and essential amino acids (EAA), PVA and nonessential amino acids (NEAA) or PVA with both EAA and NEAA. Averaged across these five treatments, the percentage of blastocyst formation was higher (P < 0.05) in the base medium supplemented with EGF and gonadotrophins. In both base media, the addition of NEAA yielded similar percentages of maturation (81-82% versus 75-80%), sperm penetration (89-93% versus 80-86%) and blastocyst formation (4-18% versus 4-13%) as media supplemented with pFF. Although similar benefits were found after the addition of EAA, their addition was associated with lower (P < 0.05) maturation (66%) and sperm penetration (58%) than when pFF was added to the base medium without EGF and gonadotrophins. However, decreased maturation after EAA addition was not detected in the base medium containing EGF and gonadotrophins. Within the same base medium, monospermy, male pronucleus formation, cleavage and blastocyst formation were not affected by the treatments; and combined addition of EAA and NEAA did not further improve oocyte development. In conclusion, a maturation system using a defined mNCSU-23 medium supplemented with EGF, gonadotrophins and EAA or NEAA was developed which yielded a similar number of blastocysts compared with a pFF-containing medium.  相似文献   

12.
为了探讨鸡肉粉完全替代鱼粉时饲料氨基酸的平衡性以及外源氨基酸的添加方式与凡纳滨对虾生长、体成分、血浆游离氨基酸及肌肉氨基酸含量的关系, 本试验采用26因子试验设计进行了为期56d的饲养试验。2个饲料蛋白质水平分别为40%和32%, 6个饲料处理分别为鱼粉组(对照组)、鸡肉粉组、鸡肉粉+晶体EAA组、鸡肉粉+晶体EAA+晶体NEAA组、鸡肉粉+包被EAA组、鸡肉粉+包被EAA+包被NEAA组, 配制12组饲料。将凡纳滨对虾(0.300.01) g随机分配到36个圆桶(150 L)中, 每桶30尾, 每3个桶为一个处理组, 饲喂一种饲料, 每天饱食投喂三次。在每一饲料蛋白质水平下, 无论是补充晶体氨基酸(CAA)组还是包被氨基酸组对虾的增重率均显著高于鸡肉粉组(P0.05), 且在32%蛋白质水平下, 包被EAA组对虾增重率达到了鱼粉组水平(P0.05); 补充晶体EAA+NEAA组对虾增重率与补充晶体EAA组无差异(P0.05), 但均显著低于补充包被氨基酸组(P0.05); 补充包被EAA组对虾增重率显著高于补充包被EAA+NEAA组(P0.05)。饲料系数的变化正好与增重率变化相反(P0.05)。饲喂高蛋白质水平饲料较之饲喂低蛋白质饲料明显提高对虾增重率、虾体蛋白含量(P0.05), 但降低虾体脂肪含量(P0.05)。包被氨基酸组凡纳滨对虾血浆游离氨基酸含量总体显著低于CAA组(P0.05)。除谷氨酸、甘氨酸以及脯氨酸外, 各组对虾肌肉氨基酸含量无显著差异(P0.05)。结果表明, 在32%饲料蛋白质水平下, 用鸡肉粉完全替代鱼粉时, 饲料中补充包被EAA可明显促进凡纳滨对虾的生长, 且达到了鱼粉组的饲喂效果。  相似文献   

13.
Vicia faba plants were grown for four and six weeks without externally supplied nitrogen. Some nitrogen was transported to the plant axis from the cotyledons throughout this period, but the amount available was insufficient to support maximum shoot growth. During this period the protein content of the shoot declined whilst the free amino acids, especially aspartic acid, glutamic acid, histamine and the combined pool for threonine, serine, asparagine and glutamine and ammonia, increased in amount. In contrast to the shoot the protein content of the root increased as did their free amino acid content, but the increase in the latter was less than in the shoot and only the combined value for threonine, serine, asparagines and glutamine increased significantly. During tbe last two weeks growth, some soluble non-amino acid compound appeared to donate nitrogen to the pool of free amino acids in the root and shoot.  相似文献   

14.
Effects of varying dietary protein intake on serum free amino acid (FAA) concentrations were studied in harbor seals (Phoca vitulina) fed two different prey fish diets: either exclusively low-fat, high-protein walleye pollock (Theragra chalcogramma) or high-fat, relatively high-energy-density Pacific herring (Clupea pallasi). Significant differences in FAA concentrations and patterns were observed between the two diets. All essential amino acids (EAA), except methionine and phenylalanine, and two nonessential amino acids (NEAA), glycine and tyrosine, decreased when the diet was switched from herring to pollock and increased on switching back to herring. Both total EAA concentrations and EAA : NEAA ratios decreased with the elevated protein intake typical of a low-fat pollock diet, indicating an inverse correlation between EAA concentrations and dietary protein intake levels. We propose that differing dietary protein intake, caused by differences in macronutrient composition of the two prey fish species, induced a change in protein metabolism that was reflected in blood-circulating amino acids. These findings suggest that surveys of amino acid profiles may be useful to partially determine the protein metabolic status of harbor seals.  相似文献   

15.
Lysates of Escherichia coli Ymel obtained from cultures grown in the absence of tryptophan in minimal medium supplemented with 0.1% casein hydrolysate show an approximate fivefold increase in steady-state specific activity of both anthranilate synthetase and tryptophan synthetase A protein relative to cultures grown in nonsupplemented medium. In the presence of repressing levels of exogenous tryptophan, growth of cultures in casein hydrolysate-supplemented medium results in a noncoordinate enhancement of repression of 10-fold for anthranilate synthetase and twofold for tryptophan synthetase A protein. Similar, but less pronounced, effects are shown for strain W3110. Strains possessing tryptophan regulator gene mutations do not exhibit this first effect, but do yield an approximate twofold decrease in specific activity of both enzymes when grown in medium supplemented with tryptophan and casein hydrolysate. A stimulation of derepression of both enzymes in strain Ymel equivalent to that induced by casein hydrolysate can be reproduced by growth in minimal medium supplemented with threonine, phenylalanine, tyrosine, serine, glutamic acid, and glutamine. Doubling time in this medium is not significantly different from that in minimal medium. An enhancement of repression which partially mimics that observed on growth in medium supplemented with tryptophan plus casein hydrolysate is obtained when Ymel is grown on medium supplemented with tryptophan plus methionine. Threonine or phenylalanine plus tyrosine as separate medium supplements are independently capable of producing a 1.4-fold or 3.4-fold stimulation, respectively, but in combination only the phenylalanine plus tyrosine effect is manifested unless serine and glutamic acid or glutamine are included. Our data show that expression of the tryptophan biosynthetic enzymes can be significantly influenced in vivo as a result of growth in medium supplemented with a variety of amino acids.  相似文献   

16.
A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.  相似文献   

17.
Composition of amino acids in feed ingredients for animal diets   总被引:3,自引:0,他引:3  
Dietary amino acids (AA) are crucial for animal growth, development, reproduction, lactation, and health. However, there is a scarcity of information regarding complete composition of “nutritionally nonessential AA” (NEAA; those AA which can be synthesized by animals) in diets. To provide a much-needed database, we quantified NEAA (including glutamate, glutamine, aspartate, and asparagine) in feed ingredients for comparison with “nutritionally essential AA” (EAA; those AA whose carbon skeletons cannot be formed by animals). Except for gelatin and feather meal, animal and plant ingredients contained high percentages of glutamate plus glutamine, branched-chain AA, and aspartate plus asparagine, which were 10–32, 15–25, and 8–14% of total protein, respectively. In particular, leucine and glutamine were most abundant in blood meal and casein (13% of total protein), respectively. Notably, gelatin, feather meal, fish meal, meat and bone meal, and poultry byproduct had high percentages of glycine, proline plus hydroxyproline, and arginine, which were 10–35, 9.6–35, and 7.2–7.9% of total protein, respectively. Among plant products, arginine was most abundant in peanut meal and cottonseed meal (14–16% of total protein), whereas corn and sorghum had low percentages of cysteine, lysine, methionine, and tryptophan (0.9–3% of total protein). Overall, feed ingredients of animal origin (except for gelatin) are excellent sources of NEAA and EAA for livestock, avian, and aquatic species, whereas gelatin provides highest amounts of arginine, glycine, and proline plus hydroxyproline. Because casein, corn, soybean, peanut, fish, and gelatin are consumed by children and adults, our findings also have important implications for human nutrition.  相似文献   

18.
The utilization of amino acids and glucose in the external nutrients and the excretion of nitrogenous compounds by Schistosoma japonicum eggs were investigated with the eggs cultured in a chemically defined medium (MEMSE-J). Of the 15 amino acids in MEMSE-J, arginine and glutamine markedly decreased in concentration during cultivation of S. japonicum eggs. The nitrogenous excretory products of developing eggs were demonstrated to be at least four amino acids (alanine, proline, glutamic acid and ornithine), urea and ammonia. Glucose was consumed at an estimated rate of 32 ng/living egg/day during the period of egg growth and differentiation. When 14C-labelled glucose was included in the culture medium, the radioactivity was incorporated into three amino acids (alanine, proline and glutamic acid), which were excreted by S. Japonicum eggs. The results were discussed with reference to the possible role in stimulating fibrosis in the granuloma of schistosomiasis.  相似文献   

19.
Abstract— A protocol for the accurate determination of intracellular levels of amino acids in tissue cultured cells has been developed and used in the measurement of intracellular amino acids levels in neuronal, glial, and non-neural cell lines, with the objective of establishing morphological correlates for large and small glutamic acid compartments and of examining hypotheses for the morphological basis of glutamic acid compartmentation. This survey of intracellular amino acid levels has revealed striking differences among the cell lines tested, but these differences did not correlate with cell type, i.e. neuronal vs glial, in contrast to earlier results (R ose , 1968) based on bulk separated neuronal and pial fractions from rat brain. Amino acid levels were found to be dependent upon tissue culture conditions, yet reproducible differences could be observed when growth and experimental conditions were carefully controlled. Glutamic acid levels for various cell lines ranged from 50.8 ± 14.3 to 158 ± 8.5 nmol/mg protein. Intracellular glutamine levels demonstrated even greater difference, with values ranging from 0.8 ± 0.2 to 107 ± 42.4 nmol/mg protein. Statistically significant differences in intracellular amino acid levels between cell lines were also observed for aspartic acid, praline, glycine, alanine, valine, cystathionine, isoleucine, and leucine. A number of cell lines demonstrating highly elevated elevated levels of γ-aminobutyrate and β-alanine were identified. The significance of neuronal and glial levels of glutamic acid, glutamine and γ-aminobutyrate to models for glutamic acid compartmentation is discussed.  相似文献   

20.
In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium concentrations above 2.5 mM, the cells displayed specific morphological changes. The effect of lactate was different to that of ammonium since the cell growth rate was progressively decreasing with the increase of lactate concentration, whereas the glucose consumption rate remained almost unchanged. Besides that, it was found that lactate was steadily eliminated from the culture medium when its initial concentration was relatively high. The influence of glutamine on CCO cell propagation showed that nutrient requirements of this cell line were mainly dependent on glutamine rather than glucose. The increase in glutamine concentration led to the increase in cell growth rate and consequent ammonia accumulation while the glucose utilization and lactate production were reduced. Without glutamine in culture medium cell growth was arrested. However, the lack of glucose reversed the stimulating effect of glutamine by decreasing cell growth rate and affecting amino acid utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号