首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Liu  D Yuan  Y Wei  W Wang  L Yan  T Wen  M Xu  J Yang  B Li 《PloS one》2012,7(8):e43821

Background

Microsomal epoxide hydrolase (EPHX1) plays an important role in both the activation and detoxification of PAHs, which are carcinogens found in cooked meat and tobacco smoking. Polymorphisms at exons 3 and 4 of the EPHX1 gene have been reported to be associated with variations in EPHX1 activity. The aim of this study is to quantitatively summarize the relationship between EPHX1 polymorphisms and colorectal cancer (CRC) risk.

Methods

Two investigators independently searched the Medline, Embase, CNKI, and Chinese Biomedicine Databases for studies published before June 2012. Summary odds ratios (ORs) and 95% confidence intervals (CIs) for EPHX1 Tyr113His (rs1051740) and His139Arg (rs2234922) polymorphisms and CRC were calculated in a fixed-effects model and a random-effects model when appropriate.

Results

This meta-analysis yielded 14 case-control studies, which included 13 studies for Tyr113His (6395 cases and 7893 controls) and 13 studies for His139Arg polymorphisms (5375 cases and 6962 controls). Overall, the pooled results indicated that EPHX1 Tyr113His polymorphism was not associated with CRC risk; while the His139Arg polymorphism was significantly associated with decreased CRC risk (Arg/His vs. His/His, OR = 0.90, 95%CI = 0.83–0.98; dominant model, OR = 0.92, 95%CI = 0.85–0.99). The statistically significant association between EPHX1 His139Arg polymorphism and CRC was observed among Caucasians and population-based case-control studies. This association showed little heterogeneity and remained consistently strong when analyses were limited to studies in which genotype frequencies were in Hardy–Weinberg equilibrium, or limited to studies with matched controls. When cumulative meta-analyses of the two associations were conducted by studies’ publication time, the results were persistent and robust.

Conclusion

This meta-analysis suggests that EPHX1 Tyr113His polymorphism may be not associated with CRC development; while the EPHX1 His139Arg polymorphism may have a potential protective effect on CRC.  相似文献   

2.
Genome-wide association studies identified single nucleotide polymorphisms (SNPs) in the nicotinic acetylcholine receptors (nAChRs) cluster as a risk factor for nicotine dependency and COPD. We investigated whether SNPs in the nAChR cluster are associated with smoking habits and lung function decline, and if these potential associations are independent of each other. The SNPs rs569207, rs1051730 and rs8034191 in the nAChR cluster were analyzed in the Vlagtwedde-Vlaardingen cohort (n = 1,390) that was followed for 25 years. We used GEE and LME models to analyze the associations of the SNPs with quitting or restarting smoking and with the annual FEV(1) decline respectively. Individuals homozygote (CC) for rs569207 were more likely to quit smoking (OR (95%CI) = 1.58 (1.05-2.38)) compared to wild-type (TT) individuals. Individuals homozygote (TT) for rs1051730 were less likely to quit smoking (0.64 (0.42; 0.97)) compared to wild-type (CC) individuals. None of the SNPs was significantly associated with the annual FEV(1) decline in smokers and ex-smokers. We show that SNPs in the nAChR region are associated with smoking habits such as quitting smoking, but have no significant effect on the annual FEV(1) decline in smokers and ex-smokers, suggesting a potential role of these SNPs in COPD development via smoking habits rather than via direct effects on lung function.  相似文献   

3.
慢性阻塞性肺疾病是呼吸系统常见慢性疾病。该疾病的发病与环境及多基因变异有关。近年的研究显示,人音猬因子相互作用蛋白基因参与多个系统疾病的发生发展,尤其对于呼吸系统该基因与慢性阻塞性肺疾病发病密切相关,该基因上某些单核苷酸多态性与慢性阻塞性肺疾病易感性相关,且在慢性阻塞性肺疾病患者肺组织内存在该基因低表达。另外,该基因与FEV1和FEV1/FVC关系密切,对肺功能有保护作用。目前的研究提示该基因和音猬信号通路在肺胚胎发育、基因表达调控、细胞增殖、细胞凋亡和平滑肌修复等方面发挥着重要调控作用,为慢性阻塞性肺疾病发病机制的研究指明了方向。本文就人音猬因子相互作用蛋白基因与慢性阻塞性肺疾病相关性的研究进展作一综述。  相似文献   

4.

Background

The present study aimed to examine the role of matrix metalloproteinase (MMP)‐3 [(–1171) 5A/6A; Lys45Glu (A/G)], MMP‐7 [(–181) A/G] and MMP‐12 [(–82) A/G; Asn357Ser (A/G)] variants in the development and severity of chronic obstructive pulmonary disease (COPD) in Tunisians.

Methods

Plethysmography was performed in all participants to measure forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC parameters. Genotyping of MMP‐3, MMP‐7 and MMP‐12 polymorphisms was carried out in 138 patients with COPD and 216 healthy controls using a polymerase chain reaction–restriction fragment length polymorphism. Serum levels of MMPs and cytokines (interleukin‐6, tumor necrosis factor‐α) were determined by an enzyme‐linked immunosorbent assay.

Results

No significant correlations were observed between genetic variations in MMP‐3, MMP‐7 and MMP‐12 and the risk of development of COPD. Additionally, no impact of MMP‐7 (–181) A/G and MMP‐12 [(–82) A/G; Asn357Ser (A/G)] polymorphisms was observed on the respective protein levels and clinical parameters of the disease. Interestingly, both MMP‐3 (–1171) 5A/6A and Lys45Glu (A/G) variants were associated with respiratory function, as well as with serum levels of MMP‐3 in COPD patients. A relationship was found between the (–1171) 6A and 45Glu (G) alleles of the MMP‐3 gene and enhanced airflow limitation among COPD patients. Additionally, carriers of the 6A6A and 45 GG genotypes present higher MMP‐3 levels than noncarriers.

Conclusions

MMP‐3 (–1171) 5A/6A and Lys45Glu (A/G) polymorphisms were associated with the decline of lung function among COPD patients. These results could be linked to the upregulation of MMP‐3 in serum from COPD patients carrying the (–1171) 6A and 45 G homozygous genotypes.  相似文献   

5.
Several studies focused on investigating genetic polymorphisms in order to estimate genetic contribution to lung cancer often showed conflicting results. In this study, we investigated the role of GSTM1, GSTT1, GSTP1 exon 5 and exon 6 polymorphisms on developing lung cancer and histological subtypes in 213 lung cancer patients and 231 controls. GSTM1 null, GSTT1 null, and GSTP1 exon 5 variant genotypes did not show a significant risk for developing lung cancer overall. Significant association was noted between GSTP1 exon 6 variant genotypes and overall lung cancer risk (OR 2.17, 95% CI 1.25–3.78; P = 0.006). These results show that GSTP1 exon 6 polymorphism might be an important factor in determining lung cancer susceptibility in a Turkish population.  相似文献   

6.
Two primary chitinases have been identified in humans--acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host's immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to chronic obstructive pulmonary disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the caucasian LHS population, the baseline forced expiratory volume in one second (FEV(1)) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV(1) and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV(1). Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups.  相似文献   

7.
Exposure to asbestos fibers is a major risk factor for malignant pleural mesothelioma (MPM), lung cancer, and other non-neoplastic conditions, such as asbestosis and pleural plaques. However, in the last decade many studies have shown that polymorphism in the genes involved in xenobiotic and oxidative metabolism or in DNA repair processes may play an important role in the etiology and pathogenesis of these diseases. To evaluate the association between diseases linked to asbestos and genetic variability we performed a review of studies on this topic included in the PubMed database. One hundred fifty-nine citations were retrieved; 24 of them met the inclusion criteria and were evaluated in the review. The most commonly studied GSTM1 polymorphism showed for all asbestos-linked diseases an increased risk in association with the null genotype, possibly linked to its role in the conjugation of reactive oxygen species. Studies focused on GSTT1 null and SOD2 Ala16Val polymorphisms gave conflicting results, while promising results came from studies on alpha1-antitrypsin in asbestosis and MPO in lung cancer. Among genetic polymorphisms associated to the risk of MPM, the GSTM1 null genotype and two variant alleles of XRCC1 and XRCC3 showed increased risks in a subset of studies. Results for the NAT2 acetylator status, SOD2 polymorphism and EPHX activity were conflicting. Major limitations in the study design, including the small size of study groups, affected the reliability of these studies. Technical improvements such as the use of high-throughput techniques will help to identify molecular pathways regulated by candidate genes.  相似文献   

8.

Aim

To evaluate the association between the EPHX1 Tyr113His and His139Arg polymorphisms in the EPHX1 gene and the risk of head and neck cancer.

Materials and Methods

Studies on the association of EPHX1 Tyr113His and His139Arg polymorphisms with HNC performed up until June 1st, 2014, were identified using a predefined search strategy. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of these associations.

Results

In this meta-analysis, 10 case-control studies, which included 9 studies of Tyr113His (1890 cases and 1894 controls) and 10 studies of His139Arg polymorphisms (1982 cases and 2024 controls), were considered eligible for inclusion. Overall, the pooled results indicated that the EPHX1 Tyr113His polymorphism was significantly associated with increased HNC risk (Tyr/His vs. Tyr/Tyr, OR = 1.26, 95%1.02–1.57;His/His+ Tyr/His vs. Tyr/Tyr, OR = 1.29, 95% I = 1.03–1.61). However, no significant association was found between the His139Arg polymorphism and HNC risk. In the subgroup analysis, a statistically significant association between the EPHX1 Tyr113His polymorphism and HNC was observed in population-based case-control studies (PCC), which involved less than 500 participants and genotype frequencies in HWE. This association showed minimal heterogeneity after excluding studies that were determined to contribute to heterogeneity. After categorizing the studies by publication time, a sensitivity analysis and cumulative meta-analysis of the two associations were conducted, and the results of the two analyses were consistent.

Conclusion

Our meta-analysis suggests that EPHX1 Tyr113His polymorphism may be a risk factor for HNC, while the EPHX1 His139Arg polymorphism has no association with HNC risk.  相似文献   

9.
The hedgehog signaling pathway plays an important role in lung morphogenesis and cellular responses to lung injury. Genome-wide association studies (GWAS) and integrative genomics approaches have demonstrated the associations between HHIP polymorphisms and chronic obstructive pulmonary disease (COPD) and in non-Asian populations. Here we investigated whether HHIP polymorphisms would also be associated with COPD susceptibility and COPD-related phenotypes in a Chinese Han population. In the present case–control study a total of 680 COPD patients and 687 healthy control subjects were recruited. Six single nucleotide polymorphisms (SNPs) (rs1828591, rs13118928, rs6817273, rs10519717, rs12504628, rs13147758) were selected for genotyping. Allele frequencies and genotype distributions were compared between patients and controls. To estimate the strength of association, odds ratios (OR) (with 95% CI) were calculated and potential confounding variables were tested by using logistic regression analysis. Association between haplotypes and COPD outcome was also assessed. We identified that SNP rs12504628 was associated with FEV1/FVC ratio among cases (P = 0.0460). Moreover, the HHIP SNP rs10519717 was associated with the severity of disease (adjusted P-value = 0.0300). The six SNPs showed strong linkage disequilibrium (r2 ≥ 0.9). Three major haplotypes were observed but showed no significant difference between case and control groups (P = 0.4532, 0.0875, and 0.3484, respectively). In conclusion, our study suggests that the HHIP gene may be involved in COPD susceptibility in Chinese Han population.  相似文献   

10.
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Irreversible airflow limitation, both progressive and associated with an inflammatory response of the lungs to noxious particles or gases, is a hallmark of the disease. Cigarette smoking is the most important environmental risk factor for COPD, nevertheless, only approximately 20–30% of smokers develop symptomatic disease. Epidemiological studies, case-control studies in relatives of patients with COPD, and twin studies suggest that COPD is a genetically complex disease with environmental factors and many involved genes interacting together. Two major strategies have been employed to identify the genes and the polymorphisms that likely contribute to the development of complex diseases: association studies and linkage analyses. Biologically plausible pathogenetic mechanisms are prerequisites to focus the search for genes of known function in association studies. Protease-antiprotease imbalance, generation of oxidative stress, and chronic inflammation are recognized as the principal mechanisms leading to irreversible airflow obstruction and parenchymal destruction in the lung. Therefore, genes which have been implicated in the pathogenesis of COPD are involved in antiproteolysis, antioxidant barrier and metabolism of xenobiotic substances, inflammatory response to cigarette smoke, airway hyperresponsiveness, and pulmonary vascular remodelling. Significant associations with COPD-related phenotypes have been reported for polymorphisms in genes coding for matrix metalloproteinases, microsomal epoxide hydrolase, glutathione-S-transferases, heme oxygenase, tumor necrosis factor, interleukines 1, 8, and 13, vitamin D-binding protein and β-2-adrenergic receptor (ADRB2), whereas adequately powered replication studies failed to confirm most of the previously observed associations. Genome-wide linkage analyses provide us with a novel tool to identify the general locations of COPD susceptibility genes, and should be followed by association analyses of positional candidate genes from COPD pathophysiology, positional candidate genes selected from gene expression studies, or dense single nucleotide polymorphism panels across regions of linkage. Haplotype analyses of genes with multiple polymorphic sites in linkage disequilibrium, such as the ADRB2 gene, provide another promising field that has yet to be explored in patients with COPD. In the present article we review the current knowledge about gene polymorphisms that have been recently linked to the risk of developing COPD and/or may account for variations in the disease course.  相似文献   

11.
Polymorphonuclear leukocytes (PMNs) are major effector cells in the chronic airway inflammation in chronic obstructive pulmonary disease (COPD). PMN degranulation is associated with degradation of extracellular matrix and tissue damage. Hck is an essential molecule in the signaling pathway regulating PMN degranulation. We hypothesized that polymorphisms affect the expression level of Hck, which, in turn, modulates PMN mediator release and tissue damage and influences the development of COPD. Here we systematically investigated genetic tag polymorphisms of the Hck gene, Hck mRNA and protein expression pattern in PMNs, and PMN mediator release (myeloperoxidase) in 60 healthy white subjects, and assessed their association with the use of several genetic models. The association of genetic polymorphisms with COPD-related phenotypes was determined in the lung healthy study cohort (LHS). We identified a novel 15 bp insertion/deletion polymorphism (8,656 L/S) in intron 1 of the Hck gene, which was associated with differential expression of Hck protein and PMN myeloperoxidase release. In the LHS cohort, there was significant interaction between the 8,656 L/S polymorphism and smoking on baseline lung function and 8,656 L/S was associated with bronchodilator response. These data suggest that the insertion/deletion polymorphism could be a functional polymorphism of the Hck gene, may contribute to COPD pathogenesis and modify COPD-related phenotypes.  相似文献   

12.
To investigate the role of microsomal epoxide hydrolase (mEH) polymorphisms in the aetiology of lung cancer and to assess the interaction between mEH polymorphisms and smoking, we performed a meta-analysis of seven published studies, which included 2078 cases and 3081 controls, and a pooled analysis of eight studies (four published and four unpublished at that time) with a total of 986 cases and 1633 controls. The combined metaanalysis odds ratios (ORs) were 0.98 (95% confidence interval [CI] = 0.72-1.35) for polymorphism at amino acid 113 in exon 3 (His/His versus Tyr/Tyr genotype) and 1.00 (95% CI= 0.71-1.41) for polymorphism at amino acid 139 in exon 4 (Arg/Arg versus His/ His genotype). In the pooled analysis, we observed a significant decrease in lung cancer risk (OR = 0.70, 95% CI = 0.51-0.96) for exon 3 His/His genotype after adjustment for age, sex, smoking and centre. The protective effect of exon 3 polymorphism seems stronger for adenocarcinoma of the lung than for other histological types. The OR for high predicted mEH activity, compared with low activity, was 1.54 (95% CI = 0.77-3.07) in the meta analysis and 1.18 (95% CI = 0.92-1.52) in the pooled analysis. We did not find a consistent modification of the carcinogenic effect of smoking according to mEH polymorphism, although the risk of lung cancer decreased among never smokers with high mEH activity and among heavy smokers with the exon 3 His/His genotype. In conclusion, this study suggests a possible effect of mEH polymorphisms at exon 3 in modulating lung cancer. If present, this effect may vary among different populations, possibly because of interaction with genetic or environmental factors.  相似文献   

13.
To investigate the role of microsomal epoxide hydrolase (mEH) polymorphisms in the aetiology of lung cancer and to assess the interaction between mEH polymorphisms and smoking, we performed a meta-analysis of seven published studies, which included 2078 cases and 3081 controls, and a pooled analysis of eight studies (four published and four unpublished at that time) with a total of 986 cases and 1633 controls. The combined metaanalysis odds ratios (ORs) were 0.98 (95% confidence interval [CI] = 0.72-1.35) for polymorphism at amino acid 113 in exon 3 (His/His versus Tyr/Tyr genotype) and 1.00 (95% CI= 0.71-1.41) for polymorphism at amino acid 139 in exon 4 (Arg/Arg versus His/ His genotype). In the pooled analysis, we observed a significant decrease in lung cancer risk (OR = 0.70, 95% CI = 0.51-0.96) for exon 3 His/His genotype after adjustment for age, sex, smoking and centre. The protective effect of exon 3 polymorphism seems stronger for adenocarcinoma of the lung than for other histological types. The OR for high predicted mEH activity, compared with low activity, was 1.54 (95% CI = 0.77-3.07) in the meta analysis and 1.18 (95% CI = 0.92-1.52) in the pooled analysis. We did not find a consistent modification of the carcinogenic effect of smoking according to mEH polymorphism, although the risk of lung cancer decreased among never smokers with high mEH activity and among heavy smokers with the exon 3 His/His genotype. In conclusion, this study suggests a possible effect of mEH polymorphisms at exon 3 in modulating lung cancer. If present, this effect may vary among different populations, possibly because of interaction with genetic or environmental factors.  相似文献   

14.
Lung cancer is the leading cause of cancer mortality in Mexico and worldwide. In the past decade, there has been an increase in the number of lung cancer cases in young people, which suggests an important role for genetic background in the etiology of this disease. In this study, we genetically characterized 16 polymorphisms in 12 low penetrance genes (AhR, CYP1A1, CYP2E1, EPHX1, GSTM1, GSTT1, GSTPI, XRCC1, ERCC2, MGMT, CCND1 and TP53) in 382 healthy Mexican Mestizos as the first step in elucidating the genetic structure of this population and identifying high risk individuals. All of the genotypes analyzed were in Hardy-Weinberg equilibrium, but different degrees of linkage were observed for polymorphisms in the CYP1A1 and EPHX1 genes. The genetic variability of this population was distributed in six clusters that were defined based on their genetic characteristics. The use of a polygenic model to assess the additive effect of low penetrance risk alleles identified combinations of risk genotypes that could be useful in predicting a predisposition to lung cancer. Estimation of the level of genetic susceptibility showed that the individual calculated risk value (iCRV) ranged from 1 to 16, with a higher iCRV indicating a greater genetic susceptibility to lung cancer.  相似文献   

15.
Alpha-1-antitrypsin (AAT) plays an important role in the pathogenesis of emphysema, the pathological lesion underlying the majority of the manifestations of Chronic Obstructive Pulmonary Disease (COPD). In this study we tested the hypothesis that common AAT polymorphisms influence the risk of developing COPDs. We investigated PiM1 (Ala213Val), PiM2 (Arg101His), PiM3 (Glu376Asp), PiS (Glu264Val) and PiZ (Glu342Lys) SERPINA1 alleles in 100 COPD patients and 200 healthy controls. No significant differences were observed in allele frequencies between COPD patients and controls, neither did haplotype analysis show significant differences between the two groups. A cross-sectional study revealed no significant relationship between common SERPINA1 polymorphisms (PiM1, PiM2, PiM3) and the emphysematous type of COPD. In addition, FEV(1) annual decline, determined during a two-year follow up period, revealed no difference among carriers of the tested polymorphisms.  相似文献   

16.
The pathogenesis of chronic obstructive pulmonary disease (COPD) is not fully understood, and environment and genetic factors have been investigated. Moreover, cytokine genes play an important role in COPD pathogenesis. However, the molecular mechanism of COPD induced by the factors is still unknown. The present study was undertaken to clarify a role of interleukin (IL)-12 16974A/C and IL-27 4730T/C, -964A/G, and 2905T/G polymorphisms in Chinese subjects with COPD. Polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) and sequence analyses were used to type IL-12 and IL-27 polymorphisms in 120 patients with COPD and 100 healthy controls. There were significant differences in the genotype and allele distribution of -964A/G and 2905T/G polymorphisms of the IL-27 gene among cases and controls in a Chinese population. When compared with the control group, subjects with AG genotype of the IL-27 -964A/G had a 2.22-fold decreased risk of COPD (odds ratio [OR] = 0.450, 95% confidence interval [CI]: 0.245-0.826; p = 0.009), and subjects with TG genotype of the IL-27 2905T/G had a 2.85-fold decreased risk of COPD (OR = 0.351, 95% CI: 0.137-0.899; p = 0.024). Compared with the TAT haplotype, the TGG haplotype was associated with a significantly decreased risk of COPD (OR = 0.29, 95% CI: 0.108-0.784; p = 0.010). Even after Bonferroni corrections, significant associations with COPD were observed for the AG genotype of the IL-27 -964A/G and the TGG haplotype of the IL-27 gene. Our data suggest that polymorphisms in the IL-27 gene may play a role in the development of COPD in Chinese population.  相似文献   

17.
Li X  Hu Z  Qu X  Zhu J  Li L  Ring BZ  Su L 《PloS one》2011,6(3):e14749

Background

EPHX1 is a key enzyme in metabolizing some exogenous carcinogens such as products of cigarette-smoking. Two functional polymorphisms in the EPHX1 gene, Tyr113His and His139Arg can alter the enzyme activity, suggesting their possible association with carcinogenesis risk, particularly of some tobacco-related cancers.

Methodology/Principal Findings

A comprehensive systematic review and meta-analysis was performed of available studies on these two polymorphisms and cancer risk published up to November 2010, consisting of 84 studies (31144 cases and 42439 controls) for Tyr113His and 77 studies (28496 cases and 38506 controls) for His139Arg primarily focused on lung cancer, upper aerodigestive tract (UADT) cancers (including oral, pharynx, larynx and esophagus cancers), colorectal cancer or adenoma, bladder cancer and breast cancer. Results showed that Y113H low activity allele (H) was significantly associated with decreased risk of lung cancer (OR = 0.88, 95%CI = 0.80–0.96) and UADT cancers (OR = 0.86, 95%CI = 0.77–0.97) and H139R high activity allele (R) with increased risk of lung cancer (OR = 1.18, 95%CI = 1.04–1.33) but not of UADT cancers (OR = 1.05, 95%CI = 0.93–1.17). Pooled analysis of lung and UADT cancers revealed that low EPHX1 enzyme activity, predicted by the combination of Y113H and H139R showed decreased risk of these cancers (OR = 0.83, 95%CI = 0.75–0.93) whereas high EPHX1 activity increased risk of the cancers (OR = 1.20, 95%CI = 0.98–1.46). Furthermore, modest difference for the risk of lung and UADT cancers was found between cigarette smokers and nonsmokers both in single SNP analyses (low activity allele H: OR = 0.77/0.85 for smokers/nonsmokers; high activity allele R: OR = 1.20/1.09 for smokers/nonsmokers) and in combined double SNP analyses (putative low activity: OR = 0.73/0.88 for smokers/nonsmokers; putative high activity: OR = 1.02/0.93 for smokers/ nonsmokers).

Conclusions/Significance

Putative low EPHX1 enzyme activity may have a potential protective effect on tobacco-related carcinogenesis of lung and UADT cancers, whereas putative high EPHX1 activity may have a harmful effect. Moreover, cigarette-smoking status may influence the association of EPHX1 enzyme activity and the related cancer risk.  相似文献   

18.
Myeloperoxidase is a strong oxidant stored in primary granules of neutrophils with potent antibacterial and proatherogenic properties. Myeloperoxidase has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the relationship of myeloperoxidase to health outcomes in COPD is not well known. We measured serum myeloperoxidase levels from 4,677 subjects with mild to moderate airflow limitation in the Lung Health Study. Using a Cox proportional hazards model, we determined the relationship of serum myeloperoxidase concentration to the risk of all-cause and disease specific causes of mortality. We found that serum myeloperoxidase concentrations were significantly related to accelerated decline in forced expiratory volume in 1 second (FEV1) over 11 years of follow-up (p<0.0001), and this association persisted after adjustments for age, sex, race, baseline FEV1, and smoking status (p = 0.048). Serum myeloperoxidase concentrations were also associated with increased risk of cardiovascular mortality (p = 0.036). Individuals in the highest quintile of myeloperoxidase had a hazard ratio of cardiovascular mortality of 1.90 (95% confidence interval 1.00–3.58; p = 0.049) compared with those in the lowest quintile, which was particularly notable in patients who continued to smoke (adjusted p-value of 0.0396). However, serum myeloperoxidase concentration was not related to total mortality, respiratory mortality, or deaths from malignancies. In conclusion, increased serum myeloperoxidase levels are associated with rapid lung function decline and poor cardiovascular outcomes in COPD patients, which support the emerging role of myeloperoxidase in the pathogenesis of COPD progression and cardiovascular disease.  相似文献   

19.
It is recognized that genetic factors play a role in the susceptibility to COPD. COPD is characterized by airflow limitation. Chronic inflammation causes small airway disease and parenchymal destruction, leading to the airflow limitation. Polymorphisms in pro-inflammatory cytokine genes may confer a risk for the development of COPD. A case-control association study was performed in Japanese population (88 COPD patients and 61 controls) and Egyptian population (106 patients and 72 controls). Genotype and allele frequencies of the TNFalpha -308 G/A and +489 G/A polymorphisms, the IL1beta -511 C/T, -31 T/C, and +3954 C/T polymorphisms, and a VNTR polymorphism in intron 2 of the IL1RN gene were investigated. In addition, pairwise haplotype frequencies were analyzed. When studied independently, none of the polymorphisms were associated with the development of COPD in both populations. However, in the Egyptian population, the distributions of the haplotype (IL1beta -31 T/C : IL1beta +3954 C/T) were significantly different between the COPD patients and the controls (p(corr)=0.0037). Our findings suggest that this haplotype within the IL1beta gene may be involved in the pathogenesis of COPD and that the genetic factors of COPD susceptibility might be different between different populations.  相似文献   

20.
An association between exon 3 polymorphisms of the gene encoding microsomal epoxide hydrolase (mEH) and susceptibility to the development of chronic obstructive pulmonary disease (COPD) has been described. We have developed two methods for detecting polymorphisms at exons 3 (Tyr113-->His) and 4 (His139-->Arg) of the mEH gene based on different melting temperatures (T(m)) of fluorescent-labeled oligonucleotide hybridization probes using single-step assays that combine fluorescence PCR and melting curve analysis (LightCycler methodology). DNA was extracted from blood in 79 COPD patients and 146 healthy controls. Results were compared with those obtained by restriction fragment length polymorphism (RFLP) analysis to detect Tyr113His variants and a single-strand conformation polymorphism (SSCP) assay for His139Arg detection. The T(m) of the exon 3 polymorphisms were 61.3 degrees C for Tyr113 (wild type) and 67.5 degrees C for His113 (mutant). The T(m) values of the exon 4 polymorphisms were 67.5 degrees C for His139 (wild type) and 59.2 degrees C for Arg139 (mutant). The within- and between-run melting peaks for the same allele differed by less than 0.5 degrees C for both the exon 3 and the exon 4 polymorphisms. Thus, melting analysis allowed easy and unambiguous assignment of genotyping by means of the respective melting curves. The proportion of individuals who were homozygous mutant for exon 3 was significantly higher in the COPD group than in the control group (p=0.004). LightCycler fluorescence genotyping of exon 4 polymorphisms correlated perfectly with SSCP results. RFLP assay classified 2 patients as homozygous mutant while LightCycler analysis genotyped them as heterozygous. DNA analysis by PCR and sequencing confirmed the LightCycler result. These high-speed (about 40 min for 32 samples), highly sensitive, and specific small-volume assays with low labor requirements hold great promise as tools for rapid detection of COPD susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号