首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitors present in dilute acid-treated lignocellulosic hydrolysates would show great effect on the growth and product formation of microorganisms. To understand their inhibitory law and mechanism on oleaginous microorganism could help improving the efficiency of lignocellulose hydrolysis, detoxification, and lipid fermentation. The effects of four representative alcohol compounds present in lignocellulosic hydrolysates, including furfuryl alcohol, vanillyl alcohol, catechol, hydroquinone on the cell growth and lipid accumulation of Trichosporon fermentans were systematically investigated in this work. The toxicity of selected alcohol compounds was well related to their log P value except furfuryl alcohol, whose log P value was the minimum but with the highest toxicity to T. fermentans. The inhibition of all the alcohol compounds on the growth of T. fermentans was more serious than on the lipid synthesis. Also, the growth of T. fermentans was more sensitive to the variation of inoculum size, temperature, and initial pH than lipid synthesis in the presence of alcohol compounds. Initial pH had more profound influence on the lipid fermentation than inoculum size and cultural temperature did. Careful control of fermentation conditions could be helpful for improving lipid yield of T. fermentans in lignocellulosic hydrolysates. Among the four alcohol compounds tested, most alcohol compounds showed inhibition on both sugar consumption and malic enzyme activity of T. fermentans. However, vanillyl alcohol had little influence on the malic enzyme activity. Similarly, all alcohol compounds except vanillyl alcohol exerted damage on the cell membrane of T. fermentans.  相似文献   

2.
Fei Q  Chang HN  Shang L  Choi JD  Kim N  Kang J 《Bioresource technology》2011,102(3):2695-2701
The use of volatile fatty acids (VFAs) for microbial lipid accumulation was investigated in flask cultures of Cryptococcus albidus. The optimum culture temperature and pH were 25 °C and pH 6.0, respectively, and the highest lipid content (27.8%) was obtained with ammonia chloride as a nitrogen source. The lipid yield coefficient on VFAs was 0.167 g/g of C. albidus with a VFAs (acetic, propionic, butyric acids) ratio of 8:1:1, which was in good agreement with a theoretically predicted lipid yield coefficient of the VFAs as a carbon source. The major fatty acids of the lipids accumulated by C. albidus were similar to those of soybean oil and jatropha oil. A preliminary cost analysis shows that VFAs-based biodiesel production is competitive with current palm and soybean based biodiesels. Further process development for lower aeration cost and higher lipid yield will make this process more economical.  相似文献   

3.
Yu X  Zheng Y  Dorgan KM  Chen S 《Bioresource technology》2011,102(10):6134-6140
This paper explores the use of the hydrolysate from the dilute sulfuric acid pretreatment of wheat straw for microbial oil production. The resulting hydrolysate was composed of pentoses (24.3 g/L) and hexoses (4.9 g/L), along with some other degradation products, such as acetic acid, furfural, and hydroxymethylfurfural (HMF). Five oleaginous yeast strains, Cryptococcus curvatus, Rhodotorula glutinis, Rhodosporidium toruloides, Lipomyces starkeyi, and Yarrowia lipolytica, were evaluated by using this hydrolysate as substrates. The results showed that all of these strains could use the detoxified hydrolysate to produce lipids while except R. toruloides non-detoxified hydrolysate could also be used for the growth of all of the selective yeast strains. C. curvatus showed the highest lipid concentrations in medium on both the detoxified (4.2 g/L) and non-detoxified (5.8 g/L) hydrolysates. And the inhibitory effect studies on C. curvatus indicated HMF had insignificant impacts at a concentration of up to 3 g/L while furfural inhibited cell growth and lipid content by 72.0% and 62.0% at 1 g/L, respectively. Our work demonstrates that lipid production is a promising alternative to utilize hemicellulosic sugars obtained during pretreatment of lignocellulosic materials.  相似文献   

4.
This study investigated the possibility of utilizing detoxified sugarcane bagasse hydrolysate (DSCBH) as an alternative carbon source to culture Yarrowia lipolytica Po1g for microbial oil and biodiesel production. Sugarcane bagasse hydrolysis with 2.5% HCl resulted in maximum total sugar concentration (21.38 g/L) in which 13.59 g/L is xylose, 3.98 g/L is glucose, and 2.78 g/L is arabinose. Detoxification of SCBH by Ca(OH)2 neutralization reduced the concentration of 5-hydroxymethylfurfural and furfural by 21.31% and 24.84%, respectively. Growth of Y. lipolytica Po1g in DSCBH with peptone as the nitrogen source gave maximum biomass concentration (11.42 g/L) compared to NH4NO3 (6.49 g/L). With peptone as the nitrogen source, DSCBH resulted in better biomass concentration than d-glucose (10.19 g/L), d-xylose (9.89 g/L) and NDSCBH (5.88 g/L). The maximum lipid content, lipid yield and lipid productivity of Y. lipolytica Po1g grown in DSCBH and peptone was 58.5%, 6.68 g/L and 1.76 g/L-day, respectively.  相似文献   

5.
Lin J  Shen H  Tan H  Zhao X  Wu S  Hu C  Zhao ZK 《Journal of biotechnology》2011,152(4):184-188
Two-stage fermentation process was used for lipid production by Lipomyces starkeyi AS 2.1560 in glucose solution without auxiliary nutrients. In the first stage, cells were cultivated in a nutrient-rich medium for propagation. In the second stage, cells were resuspended in glucose solution to achieve high cellular lipid contents. The effects of the inocula age, cell density and initial glucose concentration on lipid production were briefly studied. When high cell density fermentation was performed in a 7-L stirred-tank bioreactor for 40 h using non-sterile glucose solution as carbon source, the biomass, lipid and lipid content reached 104.6 g/L, 67.9 g/L and 64.9%, respectively. More significantly, lipid productivity reached 2.0 g/L h during the initial 16 h-period and 1.6 g/L h for the entire culture. Our results demonstrated that cell propagation and lipid accumulation processes can be spatially separated, allowing further optimization to improve both processes. The two-stage fermentation method should have a great potential to develop more efficient processes to convert renewable materials into biofuel and related products.  相似文献   

6.
Simultaneous production of citric acid (CA) and invertase by Yarrowia lipolytica A-101-B56-5 (SUC+ clone) growing from sucrose, mixture of glucose and fructose, glucose or glycerol was investigated. Among the tested substrates the highest concentration of CA was reached from glycerol (57.15 g/L) with high yield (YCA/S = 0.6 g/g). When sucrose was used, comparable amount of CA was secreted (45 g/L) with slightly higher yield (YCA/S = 0.643 g/g). In all cultures amount of isocitrate (ICA) was below 2% of total citrates. Considering invertase production, the best carbon source appeared to be sucrose (72 380 U/L). The highest yield of CA and invertase biosynthesis calculated for 1 g of biomass was obtained for cells growing from glycerol (9.9 g/g and 4325 U/g, respectively). Concentrates of extra- and intracellular invertase of the highest activity were obtained from sucrose as substrate (0.5 and 1.8 × 106 U/L, respectively).  相似文献   

7.
Feasibility of producing (R)-3-hydroxybutyric acid ((R)-3-HB) using wild type Azohydromonas lata and its mutants (derived by UV mutation) was investigated. A. lata mutant (M5) produced 780 mg/l in the culture broth when sucrose was used as the carbon source. M5 was further studied in terms of its specificity with various bioconversion substrates for production of (R)-3-HB. (R)-3-HB concentration produced in the culture broth by M5 mutant was 2.7-fold higher than that of the wild type strain when sucrose (3% w/v) and (R,S)-1,3-butanediol (3% v/v) were used as carbon source and bioconversion substrate, respectively. Bioconversion of resting cells (M5) with glucose (1% v/w), ethylacetoacetate (2% v/v), and (R,S)-1,3-butanediol (3% v/v), resulted in (R)-3-HB concentrations of 6.5 g/l, 7.3 g/l and 8.7 g/l, respectively.  相似文献   

8.
The optimal medium for butyric acid production by Clostridium thermobutyricum in a shake flask culture was studied using statistical experimental design and analysis. The optimal composition of the fermentation medium for maximum butyric acid yield, as determined on the basis of a three-level four-factor Box-Behnken design (BBD), was obtained by response surface methodology (RSM). The high correlation between the predicted and observed values indicated the validity of the model. A maximum butyric acid yield of 12.05 g/l was obtained at K2HPO4 7.2 g/l, 34.9 g/l glucose, 20 g/l yeast extract, and 15 g/l acetate, which compared well to the predicated production of 12.13 g/l.  相似文献   

9.
10.
Jung YH  Kim IJ  Kim JJ  Oh KK  Han JI  Choi IG  Kim KH 《Bioresource technology》2011,102(15):7307-7312
Oil palm trunks are a possible lignocellulosic source for ethanol production. Low enzymatic digestibility of this type of material (11.9% of the theoretical glucose yield) makes pretreatment necessary. An enzymatic digestibility of 95.4% with insoluble solids recovery of 49.8% was achieved after soaking shredded oil palm trunks in ammonia under optimum conditions (80 °C, 1:12 solid-to-liquid ratio, 8 h and 7% (w/w) ammonia solution). Treatment with 60 FPU of commercial cellulase (Accellerase 1000) per gram of glucan and fermentation with Saccharomyces cerevisiae D5A resulted in an ethanol concentration of 13.3 g/L and an ethanol yield of 78.3% (based on the theoretical maximum) after 96 h. These results indicate that oil palm trunks are a biomass feedstock that can be used for bioethanol production.  相似文献   

11.
An industrial fermentation system using lignocellulosic hydrolysate, waste yeast hydrolysate, and mixed alkali to achieve high-yield, economical succinic acid production by Actinobacillus succinogenes was developed. Lignocellulosic hydrolysate and waste yeast hydrolysate were used efficiently as carbon sources and nitrogen source instead of the expensive glucose and yeast extract. Moreover, as a novel method for regulating pH mixed alkalis (Mg(OH)2 and NaOH) were first used to replace the expensive MgCO3 for succinic acid production. Using the three aforementioned substitutions, the total fermentation cost decreased by 55.9%, and 56.4 g/L succinic acid with yield of 0.73 g/g was obtained, which are almost the same production level as fermentation with glucose, yeast extract and MgCO3. Therefore, the cheap carbon and nitrogen sources, as well as the mixed alkaline neutralize could be efficiently used instead of expensive composition for industrial succinic acid production.  相似文献   

12.
Das P  Lei W  Aziz SS  Obbard JP 《Bioresource technology》2011,102(4):3883-3887
Biomass productivity and fatty acid methyl esters (FAME) derived from intracellular lipid of a Nannochloropsis sp. isolated from Singapore’s coastal waters were studied under different light wavelengths and intensities. Nannochloropsis sp., was grown in both phototrophic and mixotrophic (glycerol as the carbon source) culture conditions in three primary monochromatic light wavelengths, i.e., red, green and blue LEDs, and also in white LED. The maximum specific growth rate (μ) for LEDs was blue > white > green > red. Nannochloropsis sp. achieved a μ of 0.64 and 0.66 d−1 in phototrophic and mixotrophic cultures under blue lighting, respectively. The intracellular fatty acid composition of Nannochloropsis sp. varied between cultures exposed to different wavelengths, although the absolute fatty acid content did differ significantly. Maximum FAME yield from Nannochloropsis sp. was 20.45% and 15.11% of dry biomass weight equivalent under photo- and mixotrophic culture conditions respectively for cultures exposed to green LED (550 nm). However, maximum volumetric FAME yield was achieved for phototrophic and mixotrophic cultures (i.e., 55.13 and 111.96 mg/l, respectively) upon cell exposure to blue LED (470 nm) due to highest biomass productivity. It was calculated that incremental exposure of light intensity over the cell growth cycle saves almost 20% of the energy input relative to continuous illumination for a given light intensity.  相似文献   

13.
In order to increase the hydrogen yield from glucose, hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria Ethanoligenens harbinense B49 was investigated. The soluble metabolites from dark-fermentation mainly were ethanol and acetate, which could be further utilized for photo-hydrogen production. Hydrogen production by B49 was noticeably affected by the glucose and phosphate buffer concentration. The maximum hydrogen yield (1.83 mol H2/mol glucose) was obtained at 9 g/l glucose. In addition, we found that the ratio of acetate/ethanol (A/E) increased with increasing phosphate buffer concentration, which is favorable to further photo-hydrogen production. The total hydrogen yield during dark- and photo-fermentation reached its maximum value (6.32 mol H2/mol glucose) using 9 g/l glucose, 30 mmol/l phosphate buffers and immobilized R. faecalis RLD-53. Results demonstrated that the combination of dark- and photo- fermentation was an effective and efficient process to improve hydrogen yield from a single substrate.  相似文献   

14.
The Antarctic basidiomycetous yeast Mrakia blollopis SK-4 can quite uniquely ferment various sugars under low temperature conditions. When strain SK-4 fermented lignocellulosic biomass using the direct ethanol fermentation (DEF) technique, approximately 30% to 65% of the theoretical ethanol yield was obtained without and with the addition of the non-ionic surfactant Tween 80, respectively. Therefore, DEF from lignocellulosic biomass with M. blollopis SK-4 requires the addition of a non-ionic surfactant to improve fermentation efficiency. DEF with lipase converted Eucalyptus and Japanese cedar to 12.6 g/l, and 14.6 g/l ethanol, respectively. In the presence of 1% (v/v) Tween 80 and 5 U/g-dry substrate lipase, ethanol concentration increased about 1.4- to 2.4-fold compared to that without Tween 80 and lipase. We therefore consider that the combination of M. blollopis SK-4 and DEF with Tween 80 and lipase has good potential for ethanol fermentation in cold environments.  相似文献   

15.
A mutant plant (Arabidopsis thaliana), sex1-1 (starch excess 1-1), accumulating high starch content in leaves was created to serve as better biomass feedstock for a H2-producing strain Clostridium butyricum CGS2, which efficiently utilizes starch for H2 production but cannot assimilate cellulosic materials. The starch content of the mutant plant increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using sex1-1 mutant plant as feedstock, C. butyricum CGS2 could produce 490.4 ml/l of H2 with a H2 production rate of 32.9 ml/h/l. The H2 production performance appeared to increase with the increase in the concentration of mutant plant from 2.5 to 10 g/l. The highest H2 to plant biomass yield was nearly 49 ml/g for the mutant plant. This study successfully demonstrated the feasibility of using a starch-rich mutant plant for more effective bioH2 production with C. butyricum CGS2.  相似文献   

16.
Yen HW  Zhang Z 《Bioresource technology》2011,102(19):9279-9281
A yeast, Rhodotorula glutinis, is regarded as a potential microbial oil producer, due to its high lipid content. The flask results of this study indicated that irradiation could increase the growth of R. glutinis compared to that of a batch without irradiation. Further 5-l fermenter results confirmed that irradiation could greatly enhance the cells’ growth rate and total lipid productivity. The maximum lipid productivity obtained in the fed-batch operation with 3 LED (light emitting diode) lamps was 0.39 g/l h as compared to 0.34 g/l h in the batch with 3 LED lamps and 0.19 g/l h in the batch without irradiation. Conclusively, the irradiation could significantly increase the cells’ growth rate, which, in turn, could be applied to the commercialized production of biodiesel from single cell oils.  相似文献   

17.
Zhao CH  Chi Z  Zhang F  Guo FJ  Li M  Song WB  Chi ZM 《Bioresource technology》2011,102(10):6128-6133
In this study, it was found that the immobilized inulinase-producing cells of Pichia guilliermondii M-30 could produce 169.3 U/ml of inulinase activity while the free cells of the same yeast strain only produced 124.3 U/ml of inulinase activity within 48 h. When the immobilized inulinase-producing yeast cells were co-cultivated with the free cells of Rhodotorula mucilaginosa TJY15a, R. mucilaginosa TJY15a could accumulate 53.2% oil from inulin in its cells and cell dry weight reached 12.2 g/l. Under the similar conditions, R. mucilaginosa TJY15a could accumulate 55.4% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 12.8 g/l within 48 h. When the co-cultures were grown in 2 l fermentor, R. mucilaginosa TJY15a could accumulate 56.6% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 19.6 g/l within 48 h. Over 90.0% of the fatty acids from the yeast strain TJY15a grown in the extract of Jerusalem artichoke tubers was C16:0, C18:1 and C18:2, especially C18:1 (50.6%).  相似文献   

18.
From the soil samples of various locations, 245 strains of microorganisms were isolated by the enrichment culture method using olive oil as a carbon source. Of these microorganisms one deuteromycotinous yeast was the best producer of extracellular lipase, and the strain WU-C12 was identified as Trichosporon fermentans from the morphological and taxonomical properties. When cultivated at 30°C for 4 d in the medium containing 8% (w/v) corn steep and 3% (v/v) olive oil as sources of nitrogen and carbon, T. fermentans WU-C12 produced 126 U/ml of extracellular lipase. When 3% (v/v) tung oil was used instead of 3% (v/v) olive oil, 146 U/ml of the lipase was produced. Although lipase production decreased to 40 U/ml by the addition of 2% (w/v) glucose to the corn steep-olive oil medium, the strain WU-C12 produced 34 U/ml of lipase in the medium containing 2% (w/v) glucose instead of 3% (v/v) olive oil. On the other hand, T. fermentans WU-C12 could grow and produce lipase in the medium containing n-paraffin as a carbon source.  相似文献   

19.
Hu ZC  Zheng YG  Shen YC 《Bioresource technology》2011,102(14):7177-7182
1,3-Dihydroxyacetone can be produced by biotransformation of glycerol with glycerol dehydrogenase from Gluconobacter oxydans cells. Firstly, improvement the activity of glycerol dehydrogenase was carried out by medium optimization. The optimal medium for cell cultivation was composed of 5.6 g/l yeast extract, 4.7 g/l glycerol, 42.1 g/l mannitol, 0.5 g/l K2HPO4, 0.5 g/l KH2PO4, 0.1 g/l MgSO4·7H2O, and 2.0 g/l CaCO3 with the initial pH of 4.9. Secondly, an internal loop airlift bioreactor was applied for DHA production from glycerol by resting cells of G. oxydans ZJB09113. Furthermore, the effects of pH, aeration rate and cell content on DHA production and glycerol feeding strategy were investigated. 156.3 ± 7.8 g/l of maximal DHA concentration with 89.8 ± 2.4% of conversion rate of glycerol to DHA was achieved after 72 h of biotransformation using 10 g/l resting cells at 30 °C, pH 5.0 and 1.5 vvm of aeration rate.  相似文献   

20.
Escherichia coli strain NZN111 could convert glucose to succinic acid efficiently in anaerobic conditions after the induction of gluconeogenic carbon sources in aerobic conditions. Acetate shows a strong effect on both yield and productivity of succinic acid. In this study, the fed-batch process of succinic acid production by NZN111 using acetate in a chemically defined medium in the aerobic stage was investigated and developed. Increasing cell density could increase succinic acid with a productivity of 3.97 g/(L h) in the first 8 h of the anaerobic phase with an overall yield of 1.42 mol/mol glucose in a 5 L fermentor. However, there was strong repression from succinic acid in the later anaerobic stage. When succinic acid exceeded 30 g/L, the glucose consumption rate began to drop sharply along with the succinic acid production rate. Supplementation with glucose from 30 to 70 g/L in the anaerobic stage showed little effect on succinic acid production. Acetic acid and pyruvic acid accumulated had no effect on succinic acid formation because of their low concentration. With acetate as the sole carbon source for aerobic cultivation in the following scale-up, 60.09 g/L of succinic acid was produced with a yield of 1.37 mol/mol in a 50 L bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号