首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The A2A adenosine receptor (A2AR) is a G‐protein–coupled receptor. We previously reported that the C terminus of the A2AR binds to translin‐associated protein X (TRAX) and modulates nerve growth factor (NGF)‐evoked neurite outgrowth in PC12 cells. Herein, we show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX‐dependent manner. Importantly, suppression of a TRAX‐interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, whereas overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear‐retained KIF2A variant (NLS‐KIF2A) did not rescue the impaired neurite outgrowth as did the wild‐type KIF2A. Therefore, redistribution of KIF2A to the cytoplasmic fraction is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 604–621, 2010  相似文献   

2.
The adenosine A2A receptor (ADORA2A) is linked to the dopamine neurotransmitter system and is also implicated in the regulation of alertness, suggesting a potential association with attention‐deficit hyperactivity disorder (ADHD) traits. Furthermore, animal studies suggest that the ADORA2A may influence ADHD‐like behavior. For that reason, the ADORA2A gene emerges as a promising candidate for studying the etiology of ADHD traits. The aim of this study was to examine the relationship between ADORA2A gene polymorphisms and ADHD traits in a large population‐based sample. This study was based on the Child and Adolescent Twin Study in Sweden (CATSS), and included 1747 twins. Attention‐deficit hyperactivity disorder traits were assessed through parental reports, and samples of DNA were collected. Associations between six single nucleotide polymorphisms (SNPs) and ADHD traits were examined, and results suggested a nominal association between ADHD traits and three of these SNPs: rs3761422, rs5751876 and rs35320474. For one of the SNPs, rs35320474, results remained significant after correction for multiple comparisons. These results indicate the possibility that the ADORA2A gene may be involved in ADHD traits. However, more studies replicating the present results are warranted before this association can be confirmed .  相似文献   

3.
心血管疾病是现今导致病人发病和死亡的首要因素,很多因素在血管性疾病发病发展中起着重要作用,血栓形成是参与脑中风及急性冠状动脉综合症的首要因素。血栓素A2(TXA2)是一种强血小板活化因子,在糖尿病患者体内的合成显著增加,并通过作用于血栓素受体诱导血小板聚集,血管收缩,血栓形成参与糖尿病心血管并发症的发生发展。因此,以TXA2为靶点开发抗血栓类药物对心血管疾病起着预防及治疗作用。本文对TXA2介导的糖尿病血管并发症的发病机制,及以此为靶点开发的抗血栓药物进行综述,为糖尿病心血管并发症的治疗及新型低副作用抗血栓药物的研发提供新的靶点。  相似文献   

4.
The distinct expression patterns of the two A-type cyclins during spermatogenesis and the absolute requirement for cyclin A1 in this biological process in vivo suggest that they may confer distinct biochemical properties to their CDK partners. We therefore compared human cyclin A1- and cyclin A2-containing CDK complexes in vitro by determining kinetic constants and by examining the complexes for their ability to phosphorylate pRb and p53. Differences in biochemical activity were observed in CDK2 but not CDK1 when complexed with cyclin A1 versus cyclin A2. Further, CDK1/cyclin A1 is a better kinase complex for phosphorylating potentially physiologically relevant substrates pRb and p53 than CDK2/cyclin A2. The activity of CDKs can therefore be regulated depending upon which A-type cyclin they bind and CDK1/cyclin A1 might be preferred in vivo.  相似文献   

5.
蛋白磷酸酶PP2A的结构及其肿瘤抑制因子功能   总被引:6,自引:0,他引:6  
蛋白磷酸酶在细胞的生命活动中起着十分重要的作用,蛋白磷酸酶2A(protein phosphatase 2A, PP2A)作为蛋白磷酸酶家族中十分重要的一员,它几乎与所有真核细胞的生命活动都有密不可分的关系.2006年,PP2A核心酶和全酶晶体结构的陆续破解对于深入了解PP2A自身的结构和亚基之间的相互作用,以及其与结合蛋白作用的机制都有重大的影响.随着PP2A与肿瘤相关性的一系列新研究成果的不断涌现,PP2A在肿瘤发生和细胞迁移中也彰显出十分关键的作用.重点介绍PP2A的组成与结构、催化亚基的特殊修饰、亚基之间的相互作用关系以及PP2A作为一种新的肿瘤抑制因子的生物学功能.  相似文献   

6.
构建多顺反子表达载体的有效工具——FMDV 2A   总被引:2,自引:0,他引:2  
近年来肿瘤多基因治疗倍受关注,然而目前缺少一种有效的构建多顺子的工具。传统的构建多顺反子的工具,如IRES等,由于存在结构大,上下游基因表达差异显著等缺陷,严重限制了其应用。FMDV2A,因其具有结构小、剪切效率高等优点为多基因治疗带来了新的希望。主要介绍了FMDV2A的特性、"剪切"活力及其在构建多顺反子载体中的应用。  相似文献   

7.
目的:克隆人颗粒溶素和穿孔素基因并构建真核表达载体pGNLY-2A-PFP,观察其在人肺癌A549细胞中的表达情况。方法:体外分离培养外周血单个核细胞并抽提总RNA,RT-PCR扩增人颗粒溶素和穿孔素的基因片段,并将其分别插入pMD18-T进行测序,鉴定正确后构建pIRES-GNLY、pIRES-PFP及pGNLY-2A-PFP并转染人肺癌A549细胞,RT-PCR和间接免疫荧光检测目的蛋白表达,流式细胞Annexin V/PI检测转染后细胞凋亡情况。结果:成功获取了人颗粒溶素和穿孔素cDNA,构建了真核表达载体pIRES-GNLY、pIRES-PFP、pGNLY-2A-PFP,转染A549细胞后检测出了目的蛋白的表达,pGNLY-2A-PFP转染组细胞死亡率高于其他对照组(P<0.05),死亡细胞以凋亡为主。结论:人颗粒溶素和穿孔素基因可以在人肺癌A549细胞中表达,二者共表达能够促进细胞凋亡,这将有助于颗粒溶素和穿孔素在肿瘤治疗中应用的后续研究。  相似文献   

8.
Melittin and phospholipase A2-activating protein (PLAP) are known as efficient activators of secretory phospholipase A2(sPLA2) types I, II, and III when phospholipid liposomes are used as substrate. The present study demonstrates that both peptides can either inhibit or activate sPLA2 depending on the peptide/phospholipid ratio when erythrocyte membranes serve as a biologically relevant substrate. Low concentrations of melittin and PLAP were observed to inhibit sPLA2-triggered release of fatty acids from erythrocyte membranes. The inhibition was reversed at melittin concentrations above 1 microM. PLAP-induced inhibition of sPLA2 persisted steadily throughout the used concentration range (0-150 nM). The two peptides induced a dose-dependent activation of sPLA2 at low concentrations, followed by inhibition when model membranes were used as substrate. This opposite modulatory effect on biological membranes and model membranes is discussed with respect to different mechanisms the interaction of the regulatory peptides with the enzyme molecules and the substrate vesicles.  相似文献   

9.
Abnormal phosphorylation of tau protein represents one of the major candidate pathological mechanisms leading to Alzheimer's disease (AD) and related tauopathies. Altered phosphorylation status of neuronal tau protein may result from upregulation of tau-specific kinases or from inhibition of tau-specific phosphatases. Increased expression of the protein inhibitor 1 of protein phosphatase 2A (I1PP2A) could therefore indirectly regulate the phosphorylation status of tau. As an important step towards elucidation of the role of I1PP2A in the physiology and pathology of tau phosphorylation, we developed a novel monoclonal antibody, DC63, which recognizes I1PP2A. Specificity of the antibody was examined by mass spectrometry and Western blot. This analysis supports the conclusion that the antibody does not recognize any of the other proteins of the 9-member leucine-rich acidic nuclear phosphoprotein family to which I1PP2A belongs. Immunoblot detection revealed that the inhibitor I1PP2A is expressed throughout the brain, including the hippocampus, temporal cortex, parietal cortex, subcortical nuclei and brain stem. The cerebellum displayed significantly higher levels of expression of I1PP2A than was seen elsewhere in the brain. Imunohistochemical analysis of normal human brain showed that I1PP2A is expressed in both neurons and glial cells and that the protein is preferentially localized to the nucleus. We conclude that the novel monoclonal antibody DC63 could be successfully employed as a mass spectrometry-validated molecular probe that may be used for in vitro and in vivo qualitative and quantitative studies of physiological and pathological pathways involving I1PP2A.  相似文献   

10.
Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA‐based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z‐nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate‐specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z‐specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome‐wide mapping reveals that PWWP2A binds selectively to H2A.Z‐containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C‐terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z‐specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.  相似文献   

11.
Platelet glycoproteins are involved in pathophysiology of cerebrovascular diseases. The aim of this study was to investigate the association between the GpIIIa gene A1/A2 polymorphism and a risk of aneurysmal subarachnoid haemorrhage (SAH) in a Polish population. In a case-control study we genotyped 288 Caucasian patients with aneurysmal SAH and 457 age-, gender- and race-matched controls. The GpIIIa A1/A2 polymorphism was genotyped with RFLP technique. No difference was found in the distribution of the polymorphism between the cases and controls (cases: A1A1—201 (69.8%), A1A2—83 (28.8%) and A2A2—4 (1.4%) vs. controls: A1A1—323 (70.7%); A1A2—128 (28.0%); A2A2—6 (1.3%), P > 0.05. In a multivariate analysis female gender (OR = 1.950; 95%CI: 1.308-2.907), hypertension (OR = 4.774; 95%CI: 3.048-7.478) and smoking (OR = 2.034; 95%CI: 1.366-3.030), but not GpIIIa A1/A2 polymorphism, were independent risk factors for aneurysmal SAH. The GpIIIa A1/A2 polymorphism is not a risk factor of aneurysmal SAH in a Polish population.  相似文献   

12.
A high renal oxygen (O2) need is primarily associated with the renal tubular O2 consumption (VO2) necessary for a high rate of sodium (Na+) transport. Limited O2 availability leads to increased levels of adenosine, which regulates the kidney via activation of both A1 and A2A adenosine receptors (A1R and A2AR, respectively). The relative contributions of A1R and A2AR to the regulation of renal Na+ transport and VO2 have not been determined. We demonstrated that A1R activation has a dose-dependent biphasic effect on both renal Na+/H+ exchanger-3 (NHE3), a major player in Na+ transport, and VO2. Here, we report concentration-dependent effects of adenosine: less than 5 × 10−7 M adenosine-stimulated NHE3 activity; between 5 × 10−7 M and 10−5 M adenosine-inhibited NHE3 activity; and greater than 10−5 M adenosine reversed the change in NHE3 activity (returned to baseline). A1R activation mediated the activation and inhibition of NHE3 activity, whereas 10−4 M adenosine had no effect on the NHE3 activity due to A2AR activation. The following occurred when A1R and A2AR were activated: (a) Blockade of the A2AR receptor restored the NHE3 inhibition mediated by A1R activation, (b) the NHE-dependent effect on VO2 mediated by A1R activation became NHE independent, and (c) A2AR bound to A1R. In summary, A1R affects VO2 via NHE-dependent mechanisms, whereas A2AR acts via NHE-independent mechanisms. When both A1R and A2AR are activated, the A2AR effect on NHE3 and VO2 predominates, possibly via an A1R–A2AR protein interaction. A2AR–A1R heterodimerization is proposed as the molecular mechanism enabling the NHE-independent control of renal VO2.  相似文献   

13.
蛋白磷酸酶2A的结构、功能和活性调节   总被引:10,自引:0,他引:10  
蛋白磷酸酶 2A(proteinphosphatase 2A ,PP2A)是主要的丝 /苏氨酸蛋白磷酸酶 ,拥有众多不同基因编码的亚基 ,分别组成多种不同的PP2A全酶 ,参与细胞周期、DNA复制、信号转导、细胞分化和细胞恶性转化等多种细胞生物学事件 ,并和神经退行性疾病、肿瘤等多种疾病的发生、发展有关。PP2A调节亚基的组织特异性表达和细胞内定位 ,催化亚基羧基末端的磷酸化和甲基化 ,第二信使神经酰胺 (ceramide)、天然小分子抑制剂等都能够调节PP2A的活性。  相似文献   

14.
Hyperhomocysteinemia is associated with coronary artery disease (CAD). The mechanistic aspects of this relationship are unclear. In CAD patients, homocysteine (HCy) concentration correlates with plasma level of adenosine that controls the coronary circulation via the activation of adenosine A2A receptors (A2AR). We addressed in CAD patients the relationship between HCy and A2AR production, and in cellulo the effect of HCy on A2AR function. 46 patients with CAD and 20 control healthy subjects were included. We evaluated A2AR production by peripheral blood mononuclear cells using Western blotting. We studied in cellulo (CEM human T cells) the effect of HCy on A2A R production as well as on basal and stimulated cAMP production following A2A R activation by an agonist‐like monoclonal antibody. HCy concentration was higher in CAD patients vs controls (median, range: 16.6 [7‐45] vs 8 [5‐12] µM, P < 0.001). A2A R production was lower in patients vs controls (1.1[0.62‐1.6] vs 1.53[0.7‐1.9] arbitrary units, P < 0.001). We observed a negative correlation between HCy concentration and A2A R production (r = ?0.43; P < 0.0001), with decreased A2A R production above 25 µM HCy. In cellulo, HCy inhibited A2AR production, as well as basal and stimulated cAMP production. In conclusion, HCy is negatively associated with A2A R production in CAD patients, as well as with A2A R and cAMP production in cellulo. The decrease in A2A R production and function, which is known to hamper coronary blood flow and promote inflammation, may support CAD pathogenesis.  相似文献   

15.
The protein A24 content of Ehrlich ascites tumor cells increased several-fold following treatment of cell cultures with nitrosoureas, but did not increase when other alkylating agents not containing carbamoyl moieties were tested. The same nitrosoureas and, in addition, 2-chloroethyl isocyanate inhibited an A24 lyase-containing cytoplasmic extract in cleaving protein A24 into histone H2A and ubiquitin. It appears that carbamoylation of A24 lyase by nitrosoureas inhibits the enzyme and is responsible for the measured increases in cellular protein A24 content due to reduced turnover of this protein.  相似文献   

16.
Coxsackievirus A16 belongs to the family Picornaviridae, and is a major agent of hand-foot-and-mouth disease that infects mostly children, and to date no vaccines or antiviral therapies are available. 2A protease of enterovirus is a nonstructural protein and possesses both self-cleavage activity and the ability to cleave the eukaryotic translation initiation factor 4G. Here we present the crystal structure of coxsackievirus A16 2A protease, which interestingly forms hexamers in crystal as well as in solution. This structure shows an open conformation, with its active site accessible, ready for substrate binding and cleavage activity. In conjunction with a previously reported “closed” state structure of human rhinovirus 2, we were able to develop a detailed hypothesis for the conformational conversion triggered by two “switcher” residues Glu88 and Tyr89 located within the bll2-cII loop. Substrate recognition assays revealed that amino acid residues P1′, P2 and P4 are essential for substrate specificity, which was verifi ed by our substrate binding model. In addition, we compared the in vitro cleavage effi ciency of 2A proteases from coxsackievirus A16 and enterovirus 71 upon the same substrates by fl uorescence resonance energy transfer (FRET), and observed higher protease activity of enterovirus 71 compared to that of coxsackievirus A16. In conclusion, our study shows an open conformation of coxsackievirus A16 2A protease and the underlying mechanisms for conformational conversion and substrate specifi city. These new insights should facilitate the future rational design of effi cient 2A protease inhibitors.  相似文献   

17.
In weak acidic medium, the anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) bind with halofluorescein dyes, such as erythrosin (Ery), eosin Y (EY) and eosin B (EB), to form ion‐association complexes, which causes fluorescence quenching of halofluorescein dyes. The quenching values (ΔF) are directly in proportional to the concentrations of bleomycins over the range 0.09–2.5 µg/mL. Based on this, a fluorescence quenching method for the determination of BLMA5 and BLMA2 has been developed. The dynamic range is 0.12–2.5 µg/mL for the determination of BLMA5 and 0.09–2.0 µg/mL for BLMA2, with detection limits (3σ) of 0.04 µg/mL for BLMA5, 0.03 µg/mL for BLMA2, respectively. It has been applied to determine the two antibiotics in human serum, urine and rabbit serum samples. The recovery is in the range 90–102%. In this work, the optimum reaction conditions and the spectral characteristics of the fluorescence are investigated. The reasons for fluorescence quenching are discussed, based on the fluorescence theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
亲环素A (CypA)是一种在生物界中广泛分布,并具有高度保守性的蛋白质,具有肽基脯氨酰顺/反异构酶活性,是免疫抑制药物环孢素A (CsA)的细胞内受体。冠状病毒是具有包膜的、单股正链RNA病毒,目前已知有7种冠状病毒可以感染人类,其中包括致命的SARS-CoV、MERS-CoV以及新型冠状病毒(SARS-CoV-2)。已有研究表明,CypA在SARS-CoV、CoV-229E、CoV-NL63以及FCoV等多种冠状病毒的复制中是必不可少的,而且CypA的抑制剂CsA及其衍生物(ALV、NIM811等)对多种冠状病毒具有明显的抑制作用,暗示CypA是潜在的抗冠状病毒药物靶点,CsA这种老药有可能是一种抗冠状病毒的药物。2019年底,新型冠状病毒突然肆虐中国,严重威胁人民生命健康并造成巨大经济损失。鉴于此,文中介绍了CypA对冠状病毒复制的影响,并阐述了其抑制剂的抗病毒作用,旨在为抗新型冠状病毒药物的研发提供科学依据及思路。  相似文献   

19.
20.
 采用微孔比色法及荧光分析法 ,研究抗男性生育化合物棉酚与猪胰腺磷脂酶A2 (phospho lipaseA2 ,PLA2 ,EC3 1 1 4 )温育并透析前后对酶活力及荧光的影响 .结果表明 ,棉酚与PLA2 不可逆地结合明显地降低了PLA2 活力及荧光强度 .棉酚对酶活力抑制作用的IC50 为 35μmol L ;当其浓度达到 80 μmol L时 ,能够完全抑制PLA2 ( 4 11μmol L)对合成底物 2 硫代十六酰乙基磷酸胆碱(HEPC ,0 .2 5mmol L)的水解作用 .PLA2 的最大激发波长与发射波长分别为 2 75nm ,34 3nm ,荧光强度与酶浓度呈良好的线性关系 .棉酚对PLA2 的荧光具有较强的淬灭作用 .由于PLA2 与男性生育密切相关 ,棉酚对PLA2 活力的影响可能是其避孕作用及伴随的副作用的一种新的重要机制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号