首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48475篇
  免费   1759篇
  国内免费   1948篇
  2023年   331篇
  2022年   495篇
  2021年   643篇
  2020年   790篇
  2019年   1352篇
  2018年   959篇
  2017年   735篇
  2016年   784篇
  2015年   1162篇
  2014年   1744篇
  2013年   2663篇
  2012年   1297篇
  2011年   1940篇
  2010年   1528篇
  2009年   2156篇
  2008年   2126篇
  2007年   2379篇
  2006年   2187篇
  2005年   1902篇
  2004年   1618篇
  2003年   1361篇
  2002年   1261篇
  2001年   949篇
  2000年   988篇
  1999年   948篇
  1998年   825篇
  1997年   814篇
  1996年   733篇
  1995年   866篇
  1994年   867篇
  1993年   858篇
  1992年   846篇
  1991年   789篇
  1990年   733篇
  1989年   736篇
  1988年   734篇
  1987年   743篇
  1986年   481篇
  1985年   733篇
  1984年   1147篇
  1983年   872篇
  1982年   1209篇
  1981年   822篇
  1980年   784篇
  1979年   748篇
  1978年   319篇
  1977年   320篇
  1976年   242篇
  1975年   200篇
  1974年   161篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
2.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
3.
6-Phosphofructo-2-kinase (ATP: D-fructose-6-phosphate-2-phosphotransferase) and D-fructose-2,6-bisphosphatase activities have been found in extracts prepared from etiolated mung bean seedlings. The activity of 6-phosphofructo-2-kinase exhibits a sigmoidal shape in response to changes in concentrations of both substrates, D-fructose 6-phosphate and ATP (S0.5 values of 1.8 and 1.2 mM, respectively). Inorganic orthophosphate (Pi) has a strong stimulating effect on the 2-kinase activity (A0.5 at about 2 mM), moderately increasing the Vmax and modifying the response into hyperbolic curves with Km values of 0.4 and 0.2 mM for fructose 6-phosphate and ATP, respectively. 3-Phosphoglycerate (I0.5 about 0.15 mM) partially inhibited the kinase activity by counteracting the Pi activation. In contrast, the activity of D-fructose-2,6-bisphosphatase (Km 0.38 mM) is strongly inhibited by Pi (I0.5 0.8 mM) lowering its affinity to fructose-2,6-P2 (Km 1.4 mM). 3-Phosphoglycerate activites the enzyme (A0.5 at about 0.3 mM) without causing a significant change in its Km for fructose-2,6-P2. The activities of both of these enzymes in relationship to the metabolic role of D-fructose 2,6-bisphosphate in the germinating seed is discussed.  相似文献   
4.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
5.
6.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
7.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   
8.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
9.
FAB1/PIKfyve是介导PI(3,5)P2 (磷脂酰肌醇3,5-二磷酸)生物合成的磷酸肌醇激酶。在动物和酵母(Saccharomyces cerevisiae)中, PI(3,5)P2参与调控胞内膜运输, 但在植物中的研究较少。该文通过分析拟南芥(Arabidopsis thaliana) FAB1的T-DNA插入突变体的表型解析PI(3,5)P2的生物学功能。拟南芥FAB1基因家族包含FAB1AFAB1BFAB1CFAB1D四个基因。研究发现, fab1a/b呈现雄配子体致死的表型。利用遗传杂交获得fab1b/c/d三突变体, 发现FAB1BFAB1CFAB1D功能缺失导致根毛相比野生型变短, 经FAB1特异性抑制剂YM201636处理后的野生型中也观察到相似的短根毛表型。此外, fab1b/c/d三突变体中DR5转录水平降低。同时, 外源施加生长素类似物2,4-D和NAA能部分恢复fab1b/c/d植株短根毛的表型, 但fab1b/c/d突变体对生长素转运抑制剂(1-NOA和TIBA)的敏感性与野生型相似。此外, FAB1B/C/D功能缺失使根毛中ROS的含量减少且影响肌动蛋白的表达。上述结果表明, FAB1B/C/D通过调控生长素分布、ROS含量和肌动蛋白的表达影响拟南芥根毛伸长。  相似文献   
10.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号