首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33747篇
  免费   812篇
  国内免费   1141篇
  2023年   1221篇
  2022年   919篇
  2021年   733篇
  2020年   520篇
  2019年   999篇
  2018年   978篇
  2017年   896篇
  2016年   421篇
  2015年   482篇
  2014年   961篇
  2013年   1160篇
  2012年   622篇
  2011年   2043篇
  2010年   890篇
  2009年   1079篇
  2008年   1123篇
  2007年   1196篇
  2006年   1088篇
  2005年   1016篇
  2004年   1082篇
  2003年   853篇
  2002年   934篇
  2001年   1239篇
  2000年   1228篇
  1999年   1264篇
  1998年   1270篇
  1997年   1135篇
  1996年   633篇
  1995年   429篇
  1994年   378篇
  1993年   317篇
  1992年   306篇
  1991年   308篇
  1990年   265篇
  1989年   236篇
  1988年   235篇
  1987年   198篇
  1986年   138篇
  1985年   331篇
  1984年   687篇
  1983年   609篇
  1982年   591篇
  1981年   492篇
  1980年   466篇
  1979年   448篇
  1978年   292篇
  1977年   231篇
  1976年   218篇
  1975年   183篇
  1974年   154篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
3.
Although there are several reports on ultradian and circadian rhythms in newborns, we found only one report in which infradian periodicities are described for heart-rate measurements in the early stages of human development. Here, we report infradian rhythms in the monthly range in the sleep/wake cycle of four infants studied along 24 consecutive weeks. Our procedure was applied to sleep diary records from four healthy newborns. The data were arranged in binary time series representing sleep (?1) or wake (1) states. These time series were integrated in order to obtain the cumulative sleep/wake time. A measure of the sleep/wake ratio (SWR) was obtained by computing the average slope of the cumulative sleep/wake time. To extract periodicities we applied the Fourier periodogram to the temporal course of the SWR. We found a notorious difference in the SWR pattern among infants. In two infants the SWR showed a marked linear decay, spending more time asleep than awake, while in the two other infants oscillated near zero. We found robust oscillations in all children. In all cases the Fourier periodogram results present significant power in the infradian range. From these results, we suggest that sleep and wake durations are probably modulated by some internal stimuli.  相似文献   
4.
 This paper deals with the use of cladistic methods and cladograms in phylogeny reconstruction in plant groups containing numerous taxa. How accurate are the cladograms as to details? Accuracy tests at the level of details require an independently known phylogeny, which excludes most plant groups, but such tests can be carried out in domesticated and experimental plant groups which have documented pedigrees. Four such tests are known and are presented here: a new case in Gilia and three previously published cases in Avena, Hordeum, and Helianthus. The four cases include domesticated and experimental plants, use of morphological and molecular evidence, and presence of dichotomous as well as reticulate phylogenies. The cladograms of the four plant groups all differ in significant details from the known pedigrees. These results are discussed in relation to problems of interpretation of cladograms. Received March 21, 2000 Accepted August 16, 2001  相似文献   
5.
Spinosyns A and D are the active ingredients in an insect control agent produced by fermentation of Saccharopolyspora spinosa. Spinosyns are macrolides with a 21-carbon, tetracyclic lactone backbone to which the deoxysugars forosamine and tri-O-methylrhamnose are attached. The spinosyn biosynthesis genes, except for the rhamnose genes, are located in a cluster that spans 74 kb of the S. spinosa genome. DNA sequence analysis, targeted gene disruptions and bioconversion studies identified five large genes encoding type I polyketide synthase subunits, and 14 genes involved in sugar biosynthesis, sugar attachment to the polyketide or cross-bridging of the polyketide. Four rhamnose biosynthetic genes, two of which are also necessary for forosamine biosynthesis, are located outside the spinosyn gene cluster. Duplication of the spinosyn genes linked to the polyketide synthase genes stimulated the final step in the biosynthesis — the conversion of the forosamine-less pseudoaglycones to endproducts. Duplication of genes involved in the early steps of deoxysugar biosynthesis increased spinosyn yield significantly. Journal of Industrial Microbiology & Biotechnology (2001) 27, 399–402. Received 31 May 2001/ Accepted in revised form 09 July 2001  相似文献   
6.
A copolymer, including a Gly-Arg-Gly-Asp-Ser (GRGDS) sequence and sugar moieties, was synthesized for the culturing of parenchymal cells (hepatocytes). Hepatocyte cells attached to poly[N-p-vinylbenzyl-d-maltonamide-co-6-(p-vinylbenzamido)-hexanoic acid-GRGDS] [poly(VMA-co-VBRGD)]-coated dishes grew approximately 60% better than on other polymer-coated surface for 12 h. Also, about 80% greater albumin secretion (0.38 pg ml–1) and about 70% greater urea synthesis (0.495 pg ml–1) from hepatocytes were produced in this matrix as compared with unstimulated cells. The behaviour of hepatocytes on poly(VMA-co-VBGRGDS)-coated dishes was not distinct from those attached to a collagen. The conjugation of the adhesion molecules of the RGD peptide in the poly(VMA-co-VBGRGDS) copolymer therefore specifically interacts with integrin families on the hepatocyte cell membrane.  相似文献   
7.
Bidens cordylocarpa is a high polyploid species restricted in distribution to stream sides in the mountains of Jalisco, Mexico. The morphologically enigmatic species was originally described as a member of the genus Coreopsis, but later transferred to Bidens, largely because the involucral bracts appear most similar to Bidens. Characters of the cypselae, often useful in generic placement, are of no value for this species because the fruits have features not detected in either Bidens or Coreopsis. Sequences from the internal transcribed spacer region of nuclear ribosomal DNA (ITS) were used to assess the relationships of Bidens cordylocarpa. The molecular phylogeny places B. cordylocarpa in a strongly supported clade of Mexican and South American Bidens, and provides more definitive evidence of relationships than morphology, chromosome number, or secondary chemistry. Molecular, morphological, and chromosomal data suggest that B. cordylocarpa is an ancient polyploid, perhaps the remnant of a polyploid complex. Received August 28, 2000 Accepted February 11, 2001  相似文献   
8.
The nicotinic acid hydroxylase from Clostridium barkeri is a selenoenzyme, as evidenced by the copurification of selenium with enzyme activity. This conclusion is supported by data showing a 23-fold increase in nicotinic acid hydroxylase activity when C. barkeri was cultured in media supplemented with selenium. A labile, selenium-containing compound was released from the native protein by treatment with either chaotropic agents and heat or by heating alone. A stable selenium compound was formed when the enzyme was alkylated prior to denaturation. This compound had the same chromatographic properties as dialykyl selenide in a number of systems. The formation of dialkyl selenide upon alkylation is not consistent with the selenium moiety being selenocysteine. Thus, nicotinic acid hydroxylase represents a new type of selenoenzyme.  相似文献   
9.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
10.
The mechanism of the binding of 2-(4'-hydroxyphenylazo)benzoic acid (HABA) to bovine serum albumin was studied by relaxation methods as well as the binding isotherm using gel chromatography. A single relaxation was observed over a wide range of HABA concentration except at the extremes of high concentration where another slow process was observed. The concentration dependence of the reciprocal relaxation time of the fast process decreased monotonically with increase in concentration of HABA at constant polymer concentration. The data were analyzed on the basis of Brown's domain structure model and were found to be consistent with a sequential binding mechanism. The azohydrazon tautomerism of HABA was identified with the intramolecular step of the complex. The activation parameters of the step, determined from the temperature dependence of the relaxation time of the fast process, showed that this step is rate limited by an enthalpy barrier in both forward and backward directions. Comparison of the activation parameters with those of other serum albumin-ligand systems suggests that there is an enthalpy-entropy compensation in the activation process of the intramolecular step with the compensation temperature at about 270 K; the enthalpy-entropy compensation is thought to be related to the hydrophobic nature of the ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号