首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50761篇
  免费   3079篇
  国内免费   2639篇
  2023年   674篇
  2022年   929篇
  2021年   1141篇
  2020年   1354篇
  2019年   1638篇
  2018年   1658篇
  2017年   1260篇
  2016年   1296篇
  2015年   1476篇
  2014年   2699篇
  2013年   3614篇
  2012年   2136篇
  2011年   2706篇
  2010年   1984篇
  2009年   2319篇
  2008年   2474篇
  2007年   2542篇
  2006年   2191篇
  2005年   2056篇
  2004年   1840篇
  2003年   1745篇
  2002年   1529篇
  2001年   1052篇
  2000年   976篇
  1999年   976篇
  1998年   974篇
  1997年   808篇
  1996年   811篇
  1995年   762篇
  1994年   707篇
  1993年   666篇
  1992年   620篇
  1991年   524篇
  1990年   497篇
  1989年   429篇
  1988年   340篇
  1987年   375篇
  1986年   308篇
  1985年   453篇
  1984年   630篇
  1983年   490篇
  1982年   497篇
  1981年   412篇
  1980年   345篇
  1979年   315篇
  1978年   241篇
  1977年   199篇
  1976年   195篇
  1975年   147篇
  1973年   153篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
3.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
4.
5.
THE TIMING OF DIVISION IN CHLAMYDOMONAS   总被引:3,自引:2,他引:1  
  相似文献   
6.
7.
 The fully enclosed Taiaro lagoon is hypersaline (42.5 psu) and non-tidal; constant salinity and water level result from strong evaporation balanced by low percolation through the lagoon floor. Seawater can flow over the atoll rim during exceptionally high seas and may then replenish lagoonal communities with propagules of oceanic origin. The distinctive water chemistry of the lagoon suggests a possible way of identifying these immigrants. We established this potential by analysing stable isotopes of carbon and oxygen in the recent growth layers of otoliths of two adult reef fishes, Chaetodon ulietensis and Acanthurus triostegus, collected from both sides of the atoll rim. Fish from the two locations were discriminated by their isotopic signatures, suggesting that analysis of the microchemical signatures deposited during the larval development could be used in future work to determine which individuals and species complete their life-cycles in this unusual lagoon. Accepted: 28 August 1997  相似文献   
8.
The mechanism of the binding of 2-(4'-hydroxyphenylazo)benzoic acid (HABA) to bovine serum albumin was studied by relaxation methods as well as the binding isotherm using gel chromatography. A single relaxation was observed over a wide range of HABA concentration except at the extremes of high concentration where another slow process was observed. The concentration dependence of the reciprocal relaxation time of the fast process decreased monotonically with increase in concentration of HABA at constant polymer concentration. The data were analyzed on the basis of Brown's domain structure model and were found to be consistent with a sequential binding mechanism. The azohydrazon tautomerism of HABA was identified with the intramolecular step of the complex. The activation parameters of the step, determined from the temperature dependence of the relaxation time of the fast process, showed that this step is rate limited by an enthalpy barrier in both forward and backward directions. Comparison of the activation parameters with those of other serum albumin-ligand systems suggests that there is an enthalpy-entropy compensation in the activation process of the intramolecular step with the compensation temperature at about 270 K; the enthalpy-entropy compensation is thought to be related to the hydrophobic nature of the ligand.  相似文献   
9.
SYNOPSIS Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity to natural ionizing radiations—the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. the role of the catalase in the mechanism of natural irradiation effect is discussed.  相似文献   
10.
The coordination polymerization from lead(II) nitrate on reaction with 4-nitrobenzoic acid and pyridine N-oxide at room temperature passes through stepwise ligand substitution reaction. An intermediate polymer [Pb(NB)(PyO)2(NO3)]n (where NB = 4-nitrobenzoate, PyO = Pyridine N-oxide) is formed to give the final polymer [Pb(NB)2(PyO)]n. A hydrated mononuclear complex [Pb(NB)2(PyO)(H2O)] is also formed if rigorous anhydrous condition is not maintained. The reaction is extended to 4,4′-bipyridyl N-oxide (BPNO), which initially gives a coordination polymer [Pb2(NO3)(NB)3(BPNO)2]n which gets converted to another coordination polymer [Pb(NB)2(BPNO)2]n. All these complexes are structurally characterized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号