首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1288985篇
  免费   144232篇
  国内免费   667篇
  1433884篇
  2018年   11684篇
  2016年   16120篇
  2015年   23193篇
  2014年   26600篇
  2013年   37804篇
  2012年   42951篇
  2011年   42870篇
  2010年   28972篇
  2009年   26385篇
  2008年   38371篇
  2007年   39515篇
  2006年   37073篇
  2005年   35540篇
  2004年   35222篇
  2003年   33854篇
  2002年   32852篇
  2001年   51463篇
  2000年   51853篇
  1999年   41976篇
  1998年   16488篇
  1997年   17006篇
  1996年   16214篇
  1995年   15330篇
  1994年   15264篇
  1993年   14992篇
  1992年   35956篇
  1991年   34856篇
  1990年   34312篇
  1989年   33526篇
  1988年   30986篇
  1987年   30069篇
  1986年   27921篇
  1985年   28249篇
  1984年   23633篇
  1983年   20642篇
  1982年   16381篇
  1981年   14739篇
  1980年   14044篇
  1979年   23110篇
  1978年   18280篇
  1977年   16578篇
  1976年   15790篇
  1975年   17207篇
  1974年   18459篇
  1973年   18404篇
  1972年   16548篇
  1971年   15332篇
  1970年   13248篇
  1969年   12618篇
  1968年   11417篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
52.
This paper is concerned with gene survival in a population which may increase without density dependence according to a generalization of the Moran model for haploid individuals. A selective advantage to one allele and the possibility of differential reproductive rates are allowed. Simple conditions are given for ultimate homozygosity to be certain and for the possibility of ultimate polymorphism. The results complement and extend those of Heyde (1981, 1982).  相似文献   
53.
The preservation of purine ring as purine bases appears to be a common feature of camel liver. Hepatic guanine appears to be actively converted into GMP in the camel rather than further degraded. The limiting step of guanine degradation appears to be the lack of hepatic guanase activity. Higher purine bases over uric acid ratios were found in camel urine with respect to those of zebu.  相似文献   
54.
The alpha-(2----8)-linked sialic acid oligosaccharides (NeuAc)n exhibit an unusual degree of heterogeneity in the conformation of their linkages. This was diagnosed by observation in their 13C NMR spectra of an equivalent and unique heterogeneity in the chemical shifts of their anomeric carbons and subsequently confirmed by more comprehensive 1H and 13C NMR studies. In these studies both one-dimensional and two-dimensional experiments were carried out on the trisaccharide (NeuAc)3 and colominic acid. In addition to the unambiguous assignment of the signals in the spectra, these experiments demonstrated that both linkages of (NeuAc)3 differed in conformation from each other and from the inner linkages of colominic acid. The NMR data indicate that these conformational differences extend to both terminal disaccharides of oligosaccharides larger than (NeuAc)5, a result that has considerable physical and biological significance. In the context of the group B meningococcal polysaccharide, it provides an explanation for the conformational epitope of the group B meningococcal polysaccharide, which was proposed on the evidence that (NeuAc)10, larger than the optimum size of an antibody site, was the smallest oligosaccharide able to bind to group B polysaccharide specific antibodies. Because the two terminal disaccharides of (NeuAc)10 differ in conformation to its inner residues, the immunologically functional part of (NeuAc)10 resides in its inner six residues. This number of residues is now consistent with the maximum size of an antibody site.  相似文献   
55.
Smooth-muscle myosin purified as described by Persechini & Hartshorne [(1983) Biochemistry 22, 470-476] contains trace amounts of calmodulin and myosin light-chain kinase, which can be removed by Ca2+-dependent hydrophobic-interaction chromatography followed by calmodulin-Sepharose affinity chromatography. The resultant column-purified myosin exhibits properties similar to those of the non-purified myosin, e.g. actin activation of the Mg2+-ATPase requires Ca2+/calmodulin-dependent phosphorylation of the two 20 kDa light chains. However, unlike the non-purified myosin, the column-purified myosin undergoes a time-dependent transition to a form which no longer requires phosphorylation for actin activation of the myosin Mg2+-ATPase. This transition is identified as a time-dependent change in conformation of the column-purified myosin from a 10 S to 6 S form and is caused by slow oxidation of the column-purified myosin, since it could be prevented by storage under N2 and reversed by 5 mM-dithiothreitol.  相似文献   
56.
6-Phosphofructo-2-kinase (ATP: D-fructose-6-phosphate-2-phosphotransferase) and D-fructose-2,6-bisphosphatase activities have been found in extracts prepared from etiolated mung bean seedlings. The activity of 6-phosphofructo-2-kinase exhibits a sigmoidal shape in response to changes in concentrations of both substrates, D-fructose 6-phosphate and ATP (S0.5 values of 1.8 and 1.2 mM, respectively). Inorganic orthophosphate (Pi) has a strong stimulating effect on the 2-kinase activity (A0.5 at about 2 mM), moderately increasing the Vmax and modifying the response into hyperbolic curves with Km values of 0.4 and 0.2 mM for fructose 6-phosphate and ATP, respectively. 3-Phosphoglycerate (I0.5 about 0.15 mM) partially inhibited the kinase activity by counteracting the Pi activation. In contrast, the activity of D-fructose-2,6-bisphosphatase (Km 0.38 mM) is strongly inhibited by Pi (I0.5 0.8 mM) lowering its affinity to fructose-2,6-P2 (Km 1.4 mM). 3-Phosphoglycerate activites the enzyme (A0.5 at about 0.3 mM) without causing a significant change in its Km for fructose-2,6-P2. The activities of both of these enzymes in relationship to the metabolic role of D-fructose 2,6-bisphosphate in the germinating seed is discussed.  相似文献   
57.
58.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
59.
Anti-My-26, a mouse monoclonal IgG1 antibody, was raised against human granulocytes and has been shown to inhibit luminol-enhanced, glucose-independent chemiluminescence (CL) of human granulocytes (or monocytes) responding to the soluble secretagogues A23187 or ionomycin (calcium ionophores) and phorbol myristate acetate (PMA). Anti-My-26 inhibition of CL was reversible and was dependent on both secretatogue and monoclonal antibody concentration. This inhibition appeared to be directed at the component of granulocyte CL that is independent of NAD(P)H-oxidase-catalyzed formation of superoxide anion, because neither opsonized zymosan-stimulated CL nor the PMA-induced decrease in NAD (P)H-associated autofluorescence was affected by anti-My-26. In addition, ionomycin, over a wide concentration range, failed to generate any decrease in granulocyte autofluorescence. The A23187-induced CL inhibited by anti-My-26 was correlated with its depression of oxygen consumption. Furthermore, anti-My-26 was not cytotoxic and did not itself induce oxidative metabolism when used as a stimulant. Binding of anti-My-26 to phagocytic cells was not decreased by pre-exposure of cells to either A23187 or PMA. Evidence is presented to suggest that the binding of anti-My-26 to the granulocyte surface inhibits the oxidative response to calcium ionophore and PMA by blocking a common pathway(s) stimulated by these different secretagogues.  相似文献   
60.
Weight loss often results from various experimental conditions including scurvy in guinea pigs, where we showed that decreased collagen synthesis was directly related to weight loss, rather than to defective proline hydroxylation (Chojkier, M., Spanheimer, R., and Peterkofsky, B. (1983) J. Clin. Invest. 72, 826-835). In the study described here, this effect was reproduced by acutely fasting normal guinea pigs receiving vitamin C, as determined by measuring collagen and non-collagen protein production after labeling tissues in vitro with [3H]proline. Collagen production (dpm/microgram of DNA) decreased soon after initiating fasting and by 96 h it had reached levels 8-12% of control values. Effects on non-collagen protein were much less severe, so that the percentage of collagen synthesis relative to total protein synthesis was 20-25% of control values after a 96-h fast. These effects were not due to changes in the specific radioactivity of free proline. Refeeding reversed the effects on non-collagen protein production within 24 h, but collagen production did not return to normal until 96 h. The effect of fasting on collagen production was independent of age, sex, ascorbate status, species of animal, and type of connective tissue and also was seen with in vivo labeling. Pulse-chase experiments and analysis of labeled and pre-existing proteins by gel electrophoresis showed no evidence of increased collagen degradation as a result of fasting. Procollagen mRNA was decreased in tissues of fasted animals as determined by cell-free translation and dot-blot hybridization with cDNA probes. In contrast, there was no decrease in translatable mRNAs for non-collagen proteins. These results suggest that loss of nutritional factors other than vitamin C lead to a rapid, specific decrease in collagen synthesis mainly through modulation of mRNA levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号