首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The rapid completion of genome sequences has created an infrastructure of biological information and provided essential information to link genes to gene products, proteins, the building blocks for cellular functions. In addition, genome/cDNA sequences make it possible to predict proteins for which there is no experimental evidence. Clues for function of hypothetical proteins are provided by sequence similarity with proteins of known function in model organisms.  相似文献   

2.

Background  

Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1.  相似文献   

3.
The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.  相似文献   

4.
Cu/Zn superoxide dismutase (SOD1) is implicated in various pathological conditions including Down's syndrome, neurodegenerative diseases, and afflictions of the autonomic nervous system (ANS). To assess the SOD1 contribution to ANS dysfunction, especially its influence on cardiac regulation, we studied the heart rate variability (HRV) and cardiac arrhythmias in conscious 12-month-old male and female transgenic mice for the human SOD1 gene (TghSOD1). TghSOD1 mice presented heart rate reduction as compared with control FVB/N individuals. All HRV parameters reflecting parasympathetic activity were increased in TghSOD1. Pharmacological studies confirmed that the parasympathetic tone was exacerbated and the sympathetic pathway was functional in TghSOD1 mice. A high frequency of atrioventricular block and premature ventricular contractions was observed in TghSOD1. By biochemical assays we found that SOD1 activities were multiplied by 9 and 4 respectively in the heart and brainstem of transgenic mice. A twofold decrease in cholinesterase activity was observed in the heart but not in the brainstem. We demonstrate that SOD1 overexpression induces an ANS dysfunction by an exacerbated vagal tone that may be related to impaired cardiac activity of the cholinesterases and may explain the high occurrence of arrhythmias.  相似文献   

5.
Jung Hoon Kang 《BMB reports》2013,46(11):555-560
Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments. [BMB Reports 2013; 46(11): 555-560]  相似文献   

6.
Mutations of Cu/Zn superoxide dismutase 1 (SOD1), a metalloenzyme catalyzing the conversion of superoxide anion to hydrogen peroxide (H(2)O(2)), are linked to motor neuron degeneration. Transgenic mouse strains overexpressing wild-type human SOD1 (Tg-SOD1) were shown to have mitochondrial swelling, vacuolization, or learning and memory deficits and are widely used for biochemical, genetic, and cognitive studies; this, along with the advent of advanced proteomic methods, made us investigate protein expression in hippocampus. Hippocampal tissues of wild-type, hemizygous, and homozygous Tg-SOD1 mice were isolated and used for two-dimensional gel electrophoresis with subsequent matrix-assisted laser desorption/ionization-time of flight identification. We identified several synaptosomal, neuronal, antioxidant, and mitochondrial proteins in hippocampus, and expression levels of syntaxin-binding protein 1, N-ethylmaleimide-sensitive factor, synaptosomal-associated protein 25, dynamin-1, neurofilament triplet L protein, neurofilament triplet M protein, neuronal tropomodulin, and neuronal protein 25 were significantly decreased in Tg-SOD1. None of the antioxidant proteins were altered except mouse SOD1. Mitochondrial ATP synthase alpha/beta chain and elongation factor Tu were aberrant in Tg-SOD1. We conclude that derangement of neuronal and mitochondrial proteins may indicate synaptosomal and neuronal loss in Tg-SOD1 hippocampus, already reported in morphological terms. This observation is of relevance to understanding brain deficits in Down syndrome, as SOD1 is encoded on chromosome 21.  相似文献   

7.
8.
9.
Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4 % NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation ofBoletus edulis were discussed.  相似文献   

10.
11.
The cytoplasmic Cu/Zn-superoxide dismutase (SOD1) represents along with catalase and glutathione peroxidase at the first defense line against reactive oxygen species in all aerobic organisms, but little is known about its distribution in developing embryos. In this study, the expression patterns of SOD1 mRNA in mouse embryos were investigated using real-time RT-PCR and in situ hybridization analyses. Expression of SOD1 mRNA was detected in all embryos with embryonic days (EDs) 7.5–18.5. The signal showed the weakest level at ED 12.5, but the highest level at ED 15.5. SOD1 mRNA was expressed in chorion, allantois, amnion, and neural folds at ED 7.5 and in neural folds, notochord, neuromeres, gut, and primitive streak at ED 8.5. In central nervous system, SOD1 mRNA was expressed greatly in embryos of EDs 9.5–11.5, but weakly in embryos of ED 12.5. At EDs 9.5–12.5, the expression of SOD1 mRNA was high in sensory organs such as tongue, olfactory organ (nasal prominence) and eye (optic vesicle), while it was decreased in ear (otic vesicle) after ED 10.5. In developing limbs, SOD1 mRNA was greatly expressed in forelimbs at EDs 9.5–11.5 and in hindlimbs at EDs 10.5–11.5. The signal increased in liver, heart and genital tubercle after ED 11.5. In the sections of embryos after ED 13.5, SOD1 mRNA was expressed in various tissues and especially high in mucosa and metabolically active sites such as lung, kidney, stomach, and intestines and epithelial cells of skin, whisker follicles, and ear and nasal cavities. These results suggest that SOD1 may be related to organogenesis of embryos as an antioxidant enzyme.  相似文献   

12.
13.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, whose primary mechanisms or causes are still not defined and for which no effective treatment is available. We have recently reported that before disease onset the level of tyrosine nitrated proteins is increased in the G93A SOD1 transgenic mouse model of ALS. In the present investigation, we carried out a proteomic analysis of spinal cord extracts from G93A SOD1 mice at the presymptomatic stage of the disease to further unravel primary events in the pathogenesis and tentatively screen for potential pharmacological targets. Using a robust two-dimensional gel electrophoresis-based proteomic approach, we detected a number of proteins differentially represented in presymptomatic mice in comparison with controls. Alterations of these proteins correlate with mitochondrial dysfunction, aggregation, and stress response. Moreover, we found a variation in the isoform pattern of cyclophilin A, a molecular chaperone that protects cells from the oxidative stress.  相似文献   

14.
To investigate the possible involvement of Cu/Zn-superoxide dismutase (CuZnSOD) gene dosage in the neuropathological symptoms of Down's syndrome, we analyzed the tongue muscle of transgenic mice that express elevated levels of human CuZnSOD. The tongue neuromuscular junctions (NMJ) in the transgenic animals exhibited significant pathological changes, namely, withdrawal and destruction of some terminal axons and the development of multiple small terminals. The ratio of terminal axon area to postsynaptic membrane decreased, and secondary folds were often complex and hyperplastic. The morphological changes in the transgenic NMJ were similar to those previously seen in muscles of aging mice and rats as well as in tongue muscle of patients with Down's syndrome. The findings suggest that CuZnSOD gene dosage is involved in the pathological abnormalities of tongue NMJ observed in Down's syndrome patients.  相似文献   

15.
M Peled-Kamar  J Lotem  E Okon  L Sachs    Y Groner 《The EMBO journal》1995,14(20):4985-4993
The copper-zinc superoxide dismutase (CuZnSOD) gene resides on chromosome 21 and is overexpressed in Down syndrome (DS) patients. Transgenic CuZnSOD mice with elevated levels of CuZnSOD were used to determine whether, as in DS, overexpression of CuZnSOD was also associated with thymus and bone marrow abnormalities. Three independently derived transgenic CuZnSOD strains had abnormal thymi showing diminution of the cortex and loss of corticomedullary demarcation, resembling thymic defects in children with DS. Transgenic CuZnSOD mice were also more sensitive than control mice to in vivo injection of lipopolysaccharide (LPS), reflected by an earlier onset and enhanced apoptotic cell death in the thymus. This higher susceptibility to LPS-induced apoptosis was associated with an increased production of hydrogen peroxide and a higher degree of lipid peroxidation. When cultured under suboptimal concentrations of interleukin 3 or in the presence of tumour necrosis factor, bone marrow cells from transgenic CuZnSOD mice produced 2- to 3-fold less granulocyte and macrophage colonies than control. The results indicate that transgenic CuZnSOD mice have certain thymus and bone marrow abnormalities which are similar to those found in DS patients, and that the defects are presumably due to an increased oxidative damage resulting in enhanced cell death by apoptosis.  相似文献   

16.
17.
Reactive oxygen species (ROS) have been considered to mediate inflammation in Down syndrome (DS). The present study is purposed to examine the mechanism of increased ROS levels and inflammatory cytokine IL-8 expression in Down syndrome candidate region-1 (DSCR1)-transfected cells, by determining ROS levels, IL-8 expression, NF-κB activation, and SOD1 levels in human embryonic kidney (HEK) 293 cells. The cells were treated with an antioxidant N-acetyl cysteine (NAC) or a calcium chelator BAPTA and stimulated with or without IL-1β. As a result, basal levels of ROS, IL-8, and NF-κB-DNA binding activity were higher, and basal SOD1 levels were higher in DSCR1-transfected cells than pcDNA-transfected cells. BAPTA and NAC inhibited increase in ROS (intracellular and mitochondrial levels) in DSCR-1-transfected cells without treatment of IL-1β. DSCR1 transfection-induced changes were increased by treatment with IL-1β, which was suppressed by NAC and BAPTA. Transfection of SOD1 inhibited ROS levels in DSCR1-transfected cells. In conclusion, ROS activate NF-κB and IL-8 induction in DSCR1-transfected cells in a calcium-dependent manner, which is augmented by IL-1β since IL-1β increases calcium and ROS levels in the cells. Reducing ROS levels by treatment of antioxidants may be beneficial for preventing DS-associated inflammation by suppressing cytokine expression.  相似文献   

18.
Manganese superoxide dismutase (MnSOD) levels have been found to be low in human pancreatic cancer [Pancreas26, (2003), 23] and human pancreatic cancer cell lines [Cancer Res.63, (2003), 1297] when compared to normal human pancreas. We hypothesized that stable overexpression of pancreatic cancer cells with MnSOD cDNA would alter the malignant phenotype. MIA PaCa-2 cells were stably transfected with a pcDNA3 plasmid containing sense human MnSOD cDNA or containing no MnSOD insert by using the lipofectAMINE method. G418-resistant colonies were isolated, grown and maintained. Overexpression of MnSOD was confirmed in two selected clones with a 2-4-fold increase in MnSOD immunoreactive protein. Compared with the parental and neo control cells, the MnSOD-overexpressing clones had decreased growth rates, growth in soft agar and plating efficiency in vitro, while in vivo, the MnSOD-overexpressing clones had slower growth in nude mice. These results suggest that MnSOD may be a tumor suppressor gene in human pancreatic cancer.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor function and eventual death as a result of degeneration of motor neurons in the spinal cord and brain. The discovery of mutations in SOD1, the gene encoding the antioxidant enzyme Cu/Zn-superoxide dismutase (CuZnSOD), in a subset of ALS patients has led to new insight into the pathophysiology of ALS. Utilizing a novel adenovirus gene delivery system, our laboratory has developed a human cell culture model using chemically differentiated neuroblastoma cells to investigate how mutations in SOD1 lead to neuronal death. Expression of mutant SOD1 (G37R) resulted in a time and dose-related death of differentiated neuroblastoma cells. This cell death was inhibited by overexpression of the antioxidant enzyme manganese superoxide dismutase (MnSOD). These observations support the hypothesis that mutant SOD1-associated neuronal death is associated with alterations in oxidative stress, and since MnSOD is a mitochondrial enzyme, suggest that mitochondria play a key role in disease pathogenesis. Our findings in this model of inhibition of mutant SOD1-associated death by MnSOD represent an unique approach to explore the underlying mechanisms of mutant SOD1 cytotoxicity and can be used to identify potential therapeutic agents for further testing.  相似文献   

20.
Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号