首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg2+ and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1.  相似文献   

2.
During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young''s modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging.  相似文献   

3.
X-ray crystallography and NMR can provide detailed structural information of protein-protein complexes, but technical problems make their application challenging in the high-throughput regime. Other methods such as small-angle X-ray scattering (SAXS) are more promising for large-scale application, but at the cost of lower resolution, which is a problem that can be solved by complementing SAXS data with theoretical simulations. Here, we propose a novel strategy that combines SAXS data and accurate protein-protein docking simulations. The approach has been benchmarked on a large pool of known structures with synthetic SAXS data, and on three experimental examples. The combined approach (pyDockSAXS) provided a significantly better success rate (43% for the top 10 predictions) than either of the two methods alone. Further analysis of the influence of different docking parameters made it possible to increase the success rates for specific cases, and to define guidelines for improving the data-driven protein-protein docking protocols.  相似文献   

4.
Mycoplasma pneumoniae forms an attachment organelle at one cell pole, binds to the host cell surface, and glides via a unique mechanism. A 170-kDa protein, P1 adhesin, present on the organelle surface plays a critical role in the binding and gliding process. In this study, we obtained a recombinant P1 adhesin comprising 1476 amino acid residues, excluding the C-terminal domain of 109 amino acids that carried the transmembrane segment, that were fused to additional 17 amino acid residues carrying a hexa-histidine (6?×?His) tag using an Escherichia coli expression system. The recombinant protein showed solubility, and chirality in circular dichroism (CD). The results of analytical gel filtration, ultracentrifugation, negative-staining electron microscopy, and small-angle X-ray scattering (SAXS) showed that the recombinant protein exists in a monomeric form with a uniformly folded structure. SAXS analysis suggested the presence of a compact and ellipsoidal structure rather than random or molten globule-like conformation. Structure model based on SAXS results fitted well with the corresponding structure obtained with cryo-electron tomography from a closely related species, M. genitalium. This recombinant protein may be useful for structural and functional studies as well as for the preparation of antibodies for medical applications.  相似文献   

5.
6.
Attaching and effacing Escherichia coli cause diarrhea and typically produce lymphostatin (LifA), an inhibitor of mitogen-activated proliferation of lymphocytes and pro-inflammatory cytokine synthesis. A near-identical factor (Efa1) has been reported to mediate adherence of E. coli to epithelial cells. An amino-terminal region of LifA shares homology with the catalytic domain of the large clostridial toxins, which are retaining glycosyltransferases with a DXD motif involved in binding of a metal ion. Understanding the mode(s) of action of lymphostatin has been constrained by difficulties obtaining a stably transformed plasmid expression clone. We constructed a tightly inducible clone of enteropathogenic E. coli O127:H6 lifA for affinity purification of lymphostatin. The purified protein inhibited mitogen-activated proliferation of bovine T lymphocytes in the femtomolar range. It is a monomer in solution and the molecular envelope was determined using both transmission electron microscopy and small-angle x-ray scattering. Domain architecture was further studied by limited proteolysis. The largest proteolytic fragment containing the putative glycosyltransferase domain was tested in isolation for activity against T cells, and was not sufficient for activity. Tryptophan fluorescence studies indicated thatlymphostatin binds uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) but not UDP-glucose (UDP-Glc). Substitution of the predicted DXD glycosyltransferase motif with alanine residues abolished UDP-GlcNAc binding and lymphostatin activity, although other biophysical properties were unchanged. The data indicate that lymphostatin has UDP-sugar binding potential that is critical for activity, and is a major leap toward identifying the nature and consequences of modifications of host cell factors.  相似文献   

7.
Annette Eva Langkilde 《FEBS letters》2009,583(16):2600-13459
Protein fibrillation is first and foremost a structural phenomenon. Adequate structural investigation of the central conformational individuals of the fibrillation process is however exceedingly difficult. This is due to the nature of the process, which may be described as a dynamically evolving equilibrium between a large number of structural species. These are furthermore of highly diverging sizes and present in very uneven amounts and timeframes. Different structural methods have different strengths and limitations. These, and in particular recent advances within solution analysis of the undisturbed equilibrium using small angle X-ray scattering, are reviewed here.  相似文献   

8.
Three‐dimensional structure determination of integral membrane proteins has advanced in unprecedented detail our understanding of mechanistic events of how ion channels, transporters, receptors, and enzymes function. This exciting progress required a tremendous amount of methods development, as exemplified here with G protein‐coupled receptors (GPCRs): Optimizing the production of GPCRs in recombinant hosts; increasing the probability of crystal formation using high‐affinity ligands, nanobodies, and minimal G proteins for co‐crystallization, thus stabilizing receptors into one conformation; using the T4 lysozyme technology and other fusion partners to promote crystal contacts; advancing crystallization methods including the development of novel detergents, and miniaturization and automation of the lipidic cubic phase crystallization method; the concept of conformational thermostabilization of GPCRs; and developing microfocus X‐ray synchrotron technologies to analyze small GPCR crystals. However, despite immense progress to explain how GPCRs function, many receptors pose intractable hurdles to structure determination at this time. Three emerging methods, serial femtosecond crystallography, micro electron diffraction, and single particle electron cryo‐microscopy, hold promise to overcome current limitations in structural membrane biology.  相似文献   

9.
Mannan-binding lectin (MBL) is the archetypical pathogen recognition molecule of the innate immune defense. Upon binding to microorganisms, reactions leading to the destruction of the offender ensue. MBL is an oligomer of structural subunits each composed of three identical polypeptides. We used atomic force microscopy to reveal tertiary and quaternary structures of MBL. The images in both air and buffer show a quaternary structure best described as “sertiform”, that is, a hub from which the subunits fan out. The dimensions conform to those calculated from primary and secondary structures. The subunits associate with a preferred angle of 40° between them. This angle is stable with respect to the degree of oligomerization for MBL of four subunits or more. Due to an interruption in the collagenous sequence, the arms of the subunits are expected to form a kink. We find that ∼ 30% of the subunits are kinked and the kink angle distributed, quite broadly, around 145°. The conformation and flexibility of the MBL molecule that we observe differ distinctly from the popular view of a “bouquet-like” configuration as that found for related members of the complement system such as C1q. This structural information will further the understanding of the specific functioning of the MBL pathway of complement activation.  相似文献   

10.
VAR2CSA is the placental-malaria–specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria.  相似文献   

11.
Diabetic nephropathy (DN) is characterized by perturbations in metabolic/cellular signaling pathways with generation of reactive oxygen species (ROS). The ROS are regarded as a common denominator of various pathways, and they inflict injury on renal glomerular cells. Recent studies indicate that tubular pathobiology also plays a role in the progression of DN. However, the mechanism(s) for how high (25 mm) glucose (HG) ambience induces tubular damage remains enigmatic. myo-Inositol oxygenase (MIOX) is a tubular enzyme that catabolizes myo-inositol to d-glucuronate via the glucuronate-xylulose (G-X) pathway. In this study, we demonstrated that G-X pathway enzymes are expressed in the kidney, and MIOX expression/bioactivity was up-regulated under HG ambience in LLC-PK1 cells, a tubular cell line. We further investigated whether MIOX overexpression leads to accentuation of tubulo-interstitial injury, as gauged by some of the parameters relevant to the progression of DN. Under HG ambience, MIOX overexpression accentuated redox imbalance, perturbed NAD+/NADH ratios, increased ROS generation, depleted reduced glutathione, reduced GSH/GSSG ratio, and enhanced adaptive changes in the profile of the antioxidant defense system. These changes were also accompanied by mitochondrial dysfunctions, DNA damage and induction of apoptosis, accentuated activity of profibrogenic cytokine, and expression of fibronectin, the latter two being the major hallmarks of DN. These perturbations were largely blocked by various ROS inhibitors (Mito Q, diphenyleneiodonium chloride, and N-acetylcysteine) and MIOX/NOX4 siRNA. In conclusion, this study highlights a novel mechanism where MIOX under HG ambience exacerbates renal injury during the progression of diabetic nephropathy following the generation of excessive ROS via an unexplored G-X pathway.  相似文献   

12.
Mammalian pyruvate dehydrogenase complex (PDC) is a key multi-enzyme assembly that is responsible for glucose homeostasis maintenance and conversion of pyruvate into acetyl-CoA. It comprises a central pentagonal dodecahedral core consisting of two subunit types (E2 and E3BP) to which peripheral enzymes (E1 and E3) bind tightly but non-covalently. Currently, there are two conflicting models of PDC (E2 + E3BP) core organisation: the ‘addition’ model (60 + 12) and the ‘substitution’ model (48 + 12). Here we present the first ever low-resolution structures of human recombinant full-length PDC core (rE2/E3BP), truncated PDC core (tE2/E3BP) and native bovine heart PDC core (bE2/E3BP) obtained by small-angle X-ray scattering and small-angle neutron scattering. These structures, corroborated by negative-stain and cryo electron microscopy data, clearly reveal open pentagonal core faces, favouring the ‘substitution’ model of core organisation. The native and recombinant core structures are all similar to the truncated bacterial E2 core crystal structure obtained previously. Cryo-electron microscopy reconstructions of rE2/E3BP and rE2/E3BP:E3 directly confirm that the core has open pentagonal faces, agree with scattering-derived models and show density extending outwards from their surfaces, which is much more structurally ordered in the presence of E3. Additionally, analytical ultracentrifugation characterisation of rE2/E3BP, rE2 (full-length recombinant E2-only) and tE2/E3BP supports the substitution model. Superimposition of the small-angle neutron scattering tE2/E3BP and truncated bacterial E2 crystal structures demonstrates conservation of the overall pentagonal dodecahedral morphology, despite evolutionary diversity. In addition, unfolding studies using circular dichroism and tryptophan fluorescence spectroscopy show that the rE2/E3BP is less stable than its rE2 counterpart, indicative of a role for E3BP in core destabilisation. The architectural complexity and lower stability of the E2/E3BP core may be of benefit to mammals, where sophisticated fine-tuning is required for cores with optimal catalytic and regulatory efficiencies.  相似文献   

13.
Lumazine synthases have been observed in the form of pentamers, dimers of pentamers, icosahedral capsids consisting of 60 subunits and larger capsids with unknown molecular structure. Here we describe the analysis of the assembly of native and mutant forms of lumazine synthases from Bacillus subtilis and Aquifex aeolicus at various pH values and in the presence of different buffers using small angle X-ray scattering and electron microscopy. Both wild-type lumazine synthases are able to form capsids with a diameter of roughly 160 A and larger capsids with diameters of around 300 A. The relative abundance of smaller and larger capsids is strongly dependent on buffer and pH. Both forms can co-exist and are in some cases accompanied by other incomplete or deformed capsids. Several mutants of the B. subtilis lumazine synthase, in which residues in or close to the active site were replaced, as well as an insertion mutant of A. aeolicus lumazine synthase form partially or exclusively larger capsids with a diameter of about 300 A. The mutations also reduce or inhibit enzymatic activity, suggesting that the catalytic function of the enzyme is tightly correlated with its quaternary structure. The data show that multiple assembly forms are a general feature of lumazine synthases.  相似文献   

14.
The molecular chaperone Hsp90 depends upon large conformational rearrangements for its function. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, structural and kinetic studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis shift the equilibrium between a preexisting set of conformational states in an organism-dependent manner. While many conformations of Hsp90 have been described, little is known about how they relate to chaperone function. In this study, we show that the conformational equilibrium of the bacterial Hsp90, HtpG, can be shifted with pH. Using small-angle X-ray scattering, we identify a two-state pH-dependent conformational equilibrium for apo HtpG. Our structural modeling reveals that this equilibrium is observed between the previously observed extended state and a second state that is strikingly similar to the recently solved Grp94 crystal structure. In the presence of nonhydrolyzable 5′-adenylyl-β,γ-imidodiphosphate, a third state, which is identical with the solved AMPPNP-bound structure from yeast Hsp90, is populated. Electron microscopy confirmed the observed conformational equilibria. We also identify key histidine residues that control this pH-dependent equilibrium; using mutagenesis, we successfully modulate the conformational equilibrium at neutral pH. Using these mutations, we show that the Grp94-like state provides stronger aggregation protection compared to the extended apo conformation in the context of a citrate synthase aggregation assay. These studies provide a more detailed view of HtpG's conformational dynamics and provide the first linkage between a specific conformation and chaperone function.  相似文献   

15.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.  相似文献   

16.
The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.  相似文献   

17.
Amyloids are typically associated with neurodegenerative diseases, but recent research demonstrates that several bacteria utilize functional amyloid fibrils to fortify the biofilm extracellular matrix and thereby resist antibiotic treatments. In Pseudomonas aeruginosa, these fibrils are composed predominantly of FapC, a protein with high-sequence conservation among the genera. Previous studies established FapC as the major amyloid subunit, but its mechanism of fibril formation in P. aeruginosa remained largely unexplored. Here, we examine the FapC sequence in greater detail through a combination of bioinformatics and protein engineering, and we identify specific motifs that are implicated in amyloid formation. Sequence regions of high evolutionary conservation tend to coincide with regions of high amyloid propensity, and mutation of amyloidogenic motifs to a designed, non-amyloidogenic motif suppresses fibril formation in a pH-dependent manner. We establish the particular significance of the third repeat motif in promoting fibril formation and also demonstrate emergence of soluble oligomer species early in the aggregation pathway. The insights reported here expand our understanding of the mechanism of amyloid polymerization in P. aeruginosa, laying the foundation for development of new amyloid inhibitors to combat recalcitrant biofilm infections.  相似文献   

18.
New insights into the modular organization and flexibility of the N-terminal half of human cardiac myosin binding protein C (cMyBP-C) and information on the association state of the full-length protein have been deduced from a combined small-angle X-ray scattering (SAXS) and NMR study. SAXS data show that the first five immunoglobulin domains of cMyBP-C, which include those implicated in interactions with both myosin and actin, remain monodisperse and monomeric in solution and have a highly extended yet distinctively ‘bent’ modular arrangement that is similar to the giant elastic muscle protein titin. Analyses of the NMR and SAXS data indicate that a proline/alanine-rich linker connecting the cardiac-specific N-terminal C0 domain to the C1 domain provides significant structural flexibility at the N-terminus of the human isoform, while the modular arrangement of domains C1–C2–C3–C4 is relatively fixed. Domain fragments from the C-terminal half of the protein have a propensity to self-associate in vitro, while full-length bacterially expressed cMyBP-C forms flexible extended dimers at micromolar protein concentrations. In summary, our studies reveal that human cMyBP-C combines a distinctive modular architecture with regions of flexibility and that the N-terminal half of the protein is sufficiently extended to span the range of interfilament distances sampled within the dynamic environment of heart muscle. These structural features of cMyBP-C could facilitate its putative role as a molecular switch between actin and myosin and may contribute to modulating the transverse pliancy of the C-zone of the A-band across muscle sarcomeres.  相似文献   

19.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   

20.
Photosynthesis requires a balance between efficient light harvesting and protection against photodamage. The cyanobacterial photoprotection system uniquely relies on the functioning of the photoactive orange carotenoid protein (OCP) that under intense illumination provides fluorescence quenching of the light-harvesting antenna complexes, phycobilisomes. The recently identified fluorescence recovery protein (FRP) binds to the photoactivated OCP and accelerates its relaxation into the basal form, completing the regulatory circle. The molecular mechanism of FRP functioning is largely controversial. Moreover, since the available knowledge has mainly been gained from studying Synechocystis proteins, the cross-species conservation of the FRP mechanism remains unexplored. Besides phylogenetic analysis, we performed a detailed structural-functional analysis of two selected low-homology FRPs by comparing them with Synechocystis FRP (SynFRP). While adopting similar dimeric conformations in solution and preserving binding preferences of SynFRP towards various OCP variants, the low-homology FRPs demonstrated distinct binding stoichiometries and differentially accentuated features of this functional interaction. By providing clues to understand the FRP mechanism universally, our results also establish foundations for upcoming structural investigations necessary to elucidate the FRP-dependent regulatory mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号