首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study describes the GC‐FID, GC/MS, GC‐O, and enantioselective GC analysis of the essential oil hydrodistilled from leaves of Lepechinica mutica (Lamiaceae), collected in Ecuador. GC‐FID and GC/MS analyses allowed the characterization and quantification of 79 components, representing 97.3% of the total sample. Sesquiterpene hydrocarbons (38.50%) and monoterpene hydrocarbons (30.59%) were found to be the most abundant volatiles, while oxygenated sesquiterpenes (16.20%) and oxygenated monoterpenes (2.10%) were the minor components. In order to better characterize the oil aroma, the most important odorants, from the sensorial point of view, were identified by Aroma Extract Dilution Analysis (AEDA) GC‐O. They were α‐Pinene, β‐Phellandrene, and Dauca‐5,8‐diene, exhibiting the characteristic woody, herbaceus, and earthy odors, respectively. Enantioselective GC analysis of Lmutica essential oil revealed the presence of twelve couples and two enantiomerically pure chiral monoterpenoids. Their enantiomeric excesses were from a few percent units to 100%. Moreover, the essential oil exhibited moderate in vitro activity against five fungal strains, being especially effective against Mcanis, which is a severe zoophilic dermatophyte causal agent of pet and human infections.  相似文献   

3.
This study aims to investigate the antioxidant effect of aromatic volatiles of three common aromatic plants, Lavandula dentata, Mentha spicata, and M. piperita. In this study, kunming mice subjected to low oxygen condition were treated with the volatiles emitted from these aromatic plants through inhalation administration. Then the blood cell counts, and the activities and gene expressions of antioxidant enzymes in different tissues were tested. The results showed that low oxygen increased the counts of red blood cells, white blood cells, and blood platelets of mice, and aromatic volatiles decreased their counts. Exposure to aromatic volatiles resulted in decreases in the malonaldehyde contents, and increases in the activities and gene expressions of superoxide dismutase, glutathione peroxidase, and catalase in different tissues under low oxygen. In addition, as the main component of aromatic volatiles, eucalyptol was the potential source that imparted positive antioxidant effect.  相似文献   

4.
Introduction – Vetiver root oil is known as one of the finest fixatives used in perfumery. This highly complex oil contains more than 200 components, which are mainly sesquiterpene hydrocarbons and their oxygenated derivatives. Since conventional GC‐MS has limitation in terms of separation efficiency, the comprehensive two‐dimensional GC‐MS (GC × GC‐MS) was proposed in this study as an alternative technique for the analysis of vetiver oil constituents. Objective – To evaluate efficiency of the hyphenated GC × GC‐MS technique in terms of separation power and sensitivity prior to identification and quantitation of the volatile constituents in a variety of vetiver root oil samples. Methodology – Dried roots of Vetiveria zizanioides were subjected to extraction using various conditions of four different methods; simultaneous steam distillation, supercritical fluid, microwave‐assisted, and Soxhlet extraction. Volatile components in all vetiver root oil samples were separated and identified by GC‐MS and GC × GC‐MS. The relative contents of volatile constituents in each vetiver oil sample were calculated using the peak volume normalization method. Results – Different techniques of extraction had diverse effects on yield, physical and chemical properties of the vetiver root oils obtained. Overall, 64 volatile constituents were identified by GC‐MS. Among the 245 well‐resolved individual components obtained by GC × GC‐MS, the additional identification of 43 more volatiles was achieved. Conclusion – In comparison with GC‐MS, GC × GC‐MS showed greater ability to differentiate the quality of essential oils obtained from diverse extraction conditions in terms of their volatile compositions and contents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Plants respond to feeding by herbivorous insects by producing volatile organic chemicals, which mediate interactions between herbivores and plants. Yet, few studies investigated whether such plant responses to herbivory differ between historical host and novel plants. Here, we investigated whether herbivory by the pine weevil Hylobius abietis causes a release of volatile organic chemicals from a novel tree Pinus brutia and compared the relative amounts of volatiles released from herbivore's historical hosts and P. brutia. We collected volatiles emitted from P. brutia seedlings that were either subjected to feeding by H. abietis or no feeding. Our results indicated that feeding increased emission of volatile compounds, composed of monoterpenes and sesquiterpenes, and that the emission was several fold higher in the damaged seedlings than in undamaged seedlings. In particular, emission of monoterpenes and sesquiterpenes increased by 4.4‐and 10‐fold in the damaged plants, respectively. Strikingly, individual monoterpenes and sesquiterpenes showed much greater dissimilarity between damaged and undamaged seedlings. Furthermore, several minor monoterpenes showed negative relationships with the weevil gnawed area. We discussed these results with the results of previous studies focused on historical host plants of H. abietis and hypothesized the ecological relevance and importance of our results pertaining relevance to the plant–herbivory interactions.  相似文献   

6.
The hydrodistilled essential oils (EOs) from flowers of five Adriatic populations of Anthemis maritima were analyzed by GC‐FID and GC/MS. Anthemis maritima is a psammophilous plant living generally on coastal sand dunes but occasionally on sea cliffs and shingle beaches. A total of 163 chemical compounds were identified, accounting for 90.5% of the oils. The main classes of compounds represented in the EOs were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, and terpene esters.The multivariate chemometric techniques, in particular cluster analysis and principal coordinate analysis, used to classify the samples, highlighted three different chemotypes linked to a geographic origin. One group living in northern Italy was characterized by the highest content of β‐pinene, γ‐terpinene, and β‐caryophyllene, a second chemotype was in central Italy with the highest amount of trans‐chrysanthenyl acetate and a third group living in southern Italy with a more heterogeneous volatile profile was characterized by the highest values of cis‐chrysanthenyl acetate, trans‐chrysanthenyl isobutyrate, cis‐carveol propionate, α‐zingiberene, and cubenol. Moreover, the comparison of the Adriatic populations with the Tyrrhenian samples, analyzed in a previous research, showed that cubenol (absent in all the Tyrrhenian populations) and (E)‐β‐farnesene (absent in all the Adriatic samples) play a crucial role in discriminating the Italian populations.  相似文献   

7.
The chemical composition of the essential oils and aromatic waters isolated from six Italian Anthemis maritima populations was determined by GC‐FID and GC/MS analyses. In total, 122 and 100 chemical compounds were identified in the essential oils and the aromatic waters, respectively. The main compound classes represented in the oils were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, and terpene esters. Multivariate chemometric techniques such as cluster analysis (CA) and principal coordinate analysis (PCO) were used to classify the samples according to the geographical origin. Statistical analysis allowed the attribution of the analyzed populations to different chemotype groups.  相似文献   

8.
Mandragora autumnalis Bertol . (Solanaceae family), synonym of M. officinalis Mill ., occurs in North Africa and grows natively in Northern and Central Tunisia, in humid to sub‐arid climates. The ripe fruits of mandrake are odiferous with a particular, indescribable, specific odor, shared, to a lesser extent, by the leaves and roots. We carried out an investigation of the essential oils (EOs) and of the aromatic volatiles emitted by fresh leaves, roots and ripe fruits of M. autumnalis growing wild in Central Tunisia. The EOs were obtained from freshly collected plant material by hydrodistillation, while the volatile emissions from the powdered M. autumnalis tissues were sampled by headspace solid phase microextraction (HS‐SPME); both types of samples were analyzed by gas chromatography‐mass spectrometry (GC/MS). Fifty‐one compounds representing 96.2–98.6 % of the total oil compositions were identified in the three tissues and belonged to different chemical classes specifically in 16 esters, 12 alcohols, 12 hydrocarbons, 6 ketones, 3 aldehydes and 3 acids. The main constituents were pentadecanoic acid (34.2 %) and hexadecanol (26.3 %). A total of 78 volatile compounds emanating from M. autumnalis tissues, representing 94.1–96.4 % of the total volatile compositions, were identified: 22 esters, 11 alcohols, 9 aldehydes, 14 ketones, 7 nitrogen, 10 hydrocarbons, 2 lactones, 1 sulfur and 2 ethers. Ethyl hexanoate (12.3 %) and 1,3‐butanediol (12.3 %) were at the highest relative percentages. This study characterizes and distinguishes M. autumnalis from Tunisia and attributes the compounds responsible for the intoxicating and particular odor of fruits. Chemosystematic of Mandragora autumnalis based on the identification of essential oils and headspace volatiles of each of its organ can be used to characterize this species according to its geographic distribution.  相似文献   

9.
The essential oils (EOs) of green seeds from Daucus carota subsp. maximus growing wild in Pantelleria Island (Sicily, Italy) were characterized. EOs were extracted by steam distillation, examined for their inhibitory properties against food‐borne Gram‐positive and Gram‐negative bacteria and analyzed for the chemical composition by gas chromatography (GC) and mass spectrometry (MS). Undiluted EOs showed a large inhibition spectrum against Gram‐positive strains and also vs. Acinetobacter spp. and Stenotrophomonas maltophilia. The minimum inhibition concentration (MIC) was in the range 1.25 – 2.50 μl/ml for the most sensitive strains. The chemical analysis indicated that Dcarota subsp. maximus EOs included 34 compounds (five monoterpene hydrocarbons, six oxygenated monoterpenes, 14 sesquiterpene hydrocarbons, four oxygenated sesquiterpenes, camphorene and four other compounds), accounting for 95.48% of the total oil, and that the major chemicals were carotol, β‐bisabolene, and isoelemicin.  相似文献   

10.
The aroma emitted from the different organs of two Salvia verbenaca L. populations from Jordan were extracted by Solid Phase Micro‐Extraction (SPME) and then analyzed by GC/MS. The emission profile of the stem, leaf and sepal samples from the Mediterranean zone (Al‐Salt) was dominated by monoterpene hydrocarbons (68.0 %, 33.7 %, and 42.2 %, respectively). The emission profile of flowering parts including pre‐flowering buds, fully expanded flowers and petals was dominated by oxygenated monoterpenes (58.6 %, 59.3 % and 87.1 %, respectively). The major constituent detected in these organs was trans‐sabinene hydrate acetate (range 14.5 %–87.0 %). On the other hand, samples collected from Irano‐Turanian zone showed different emission patterns. While the stems, leaves and petal emissions were dominated by sesquiterpene hydrocarbons (54.9 %, 76.8 % and 52.6 %, respectively), monoterpene hydrocarbons dominated the emission profiles of the pre‐flowering buds (75.1 %) and fully expanded flowers (73.6 %). Petals emissions were characterized by high concentrations of oxygenated monoterpenes (58.8 %). Notably, trans‐sabinene hydrate dominated most organs emissions except for leaves (range 20.0 %–58.8 %). Principle Component Analysis (PCA) and Cluster Analysis (CA) revealed two different clusters related to the two different geographical zones. The current investigation revealed two ecotypes of S. verbenaca that could result in two different chemotypes. Trans‐sabinene hydrate acetate and trans‐sabinene hydrate are suggested compounds for identifying these two chemotypes.  相似文献   

11.
A. Capuzzo 《Plant biosystems》2016,150(2):236-243
Hybridization of species belonging to the genus Mentha is quite common. However, the indicators of hybridity are many and make Mentha hybrids' identification difficult. By using the same molecular strategy that allowed us to unequivocally identify some Mentha species, we amplified the Not-Transcribed-Spacer (NTS) of the 5S-rRNA gene to characterize the industrial crop peppermint, M. × piperita and some important Mentha interspecific hybrids: M. × dalmatica, M. × dumetorum, M. × rotundifolia, M. × maximilianea, M. × smithiana, M. × verticillata, M. × villosa. DNA amplification, sequence and cluster analysis revealed differences in the 5S-rRNA NTS region of Mentha hybrids. Peppermint and all other hybrids were unequivocally discriminated by RFLP analysis by using TaqI restriction enzyme, while a further discrimination between M. × dumetorum and M. × verticillata was obtained by XhoI restriction enzyme. Essential oil composition showed clustering patterns similar to DNA fingerprint, with a clear discrimination between plants producing menthofuran (e.g. M. aquatica and its related hybrids, including peppermint) and those containing piperitenone oxide (M. longifolia and its related hybrids).  相似文献   

12.
Introduction – The aerial parts of Zygophyllum album L. are used in folk medicine as an antidiabetic agent and as a drug active against several pathologies. In this work we present the chemical composition of Algerian essential oils obtained by microwave accelerated distillation (MAD) extraction, a solventless method assisted by microwave. Objective – Under the same analytical conditions and using GC‐FID and GC‐MS, the chemical composition of the essential oil of Zygophyllum album L. extracted by MAD was compared with that achieved using hydrodistillation (HD). Methodology – The extracted compounds were hydrosoluble, and they were removed from the aqueous solution by a liquid extraction with an organic solvent. Results – Employing MAD (100°C, 30 min), the essential oil contained mainly oxygenated monoterpenes with major constituents: carvone and α‐terpineol. However, most of the compounds present in the hydrodistilled volatile fraction were not terpene species, with β‐damascenone as a major constituent. Conclusion – The MAD method appears to be more efficient than HD: after 30 min extraction time, the obtained yields (i.e. 0.002%) were comparable to those provided by HD after 3 h extraction. MAD seems to be more convenient since the volatile fraction is richer in oxygenated monoterpenes, species that are recognised for their olfactory value and their contribution to the fragrance of the essential oil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (–)‐hamanasic acid A ((–)‐HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)‐accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (–)‐HAA accompanying surface secreted products: compounds 4‐hydroxyacetophenone (piceol; 1 ) and 2‐hydroxy‐5‐methoxyacetophenone ( 2 ), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon‐ and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant‐pathogen and plant‐plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high‐valued bioproducts.  相似文献   

14.
A new method is reported for the histochemical localizationof monoterpene phenols in essential oil secretory structures.The method was adapted from a spot test originally devised forin vitro detection of phenolic compounds in organic analyses.Plant subjects were the Lamiaceae species Thymus vulgaris L.,Oreganum vulgare L. and Mentha x piperita L., which accumulateessential oil in glandular trichomes. A reagent consisting of4-nitrosophenol in conc. H2SO4was applied to sample leaves ofeach species. A positive test for phenol was indicated by theproduction of coloured indophenols. Using this method, monoterpenephenols were identified in the trichomes of T. vulgaris(thymol)and O. vulgare(carvacrol), indicated by colour changes to redand green respectively. No phenol was detected in trichomesof M. x piperita. Results were confirmed by GC-MS analysis ofleaf volatile extracts from each species, and in vitro testswith thymol and carvacrol. The method could be used in fieldsurveys for rapid identification of potential medicinal plantsand bioactive compounds. Copyright 2001 Annals of Botany Company Histochemistry, secretory structures, glandular trichomes, Lamiaceae, Thymus vulgaris, Oreganum vulgare, Mentha x piperita, essential oil, aromatic monoterpenes  相似文献   

15.
The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra ) from the Julian Alps were investigated by GC‐FID and GC/MS analyses. In total, 54 of the 57 detected essential‐oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ‐car‐3‐ene, β‐phellandrene, α‐pinene, β‐myrcene, and β‐pinene and the sesquiterpene β‐caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal‐component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II.  相似文献   

16.
The shoot growth and fresh weight of Mentha piperita grown in soil were stimulated at concentrations of 1.26 × 10?5M to 7.77 × 10?4M phosfon (2,4-dichlorobenzyl tributyl phosphonium chloride) while higher concentrations resulted in retardation of growth. Concentrations of 6.30 × 10?7M to 3.78 × 10?5M caused retardation of growth in mineral nutrient solution, and even death at the highest concentrations. However, when the M. piperita plants were grown in mineral nutrient solutions at concentrations of phosfon which had been sequentially lowered from 2.52 × 10?8M to 2.52 × 10?12M, the shoot growth and fresh weight were stimulated as in the case of plants grown in phosfon treated soil.  相似文献   

17.
Helichrysum genus consists of about 600 species widespread throughout the world, especially in South Africa and in the Mediterranean area. In this study the aroma profile (HS‐SPME) and the EO compositions of seven Helichrysum species (Hcymosum, Hodoratissimum, Hpetiolare, Hfontanesii, Hsaxatile, Hsanguineum, and Htenax) were evaluated. All the plants were grown in Italy under the same growth conditions. The volatile constituents, particularly monoterpenes, depended by the plant's genotype and ecological adaptation. This study represents the first headspace evaluation on the selected plants and the results evidenced that monoterpenes represented the main class of constituents in five of the seven species analysed (from 59.2% to 95.0%). The higher content in sesquiterpene hydrocarbons was observed in the Mediterranean species of Hsanguineum (68.0%). Only Hsaxatile showed relative similar abundance of monoterpenes and sesquiterpene hydrocarbons. The essential oil composition of the majority of examined species are characterised by high percentage of sesquiterpenes (especially β‐caryophyllene and δ‐cadinene) ranging from 51.3% to 92.0%, except for Hcymosum, Htenax, and Hsanguineum leaves where monoterpenes predominated (from 51.7% to 74.7%).  相似文献   

18.
Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes.  相似文献   

19.
The Dufour gland secretions of myrmica rubra, M. ruginodis, M. sabuleti and M. scabrinodis have been studied. The most volatile portions of the secretion of workers of all four species were found to be similar, containing C2C4 oxygenated compounds. The less volatile portion consists of a mixture of hydrocarbons. In M. ruginodis this is chiefly a mixture of linear saturated and mono-unsaturated hydrocarbons, similar in composition to that of M. rubra, while in M. sabuleti it consists of (Z,E)-α-farnesene and its homologues, homofarnesene, bishomofarnesene and trishomofarnesene, similar in composition to that of M. scabrinodis. Workers of each species studied were attracted to the Dufour gland volatiles of all four species, these substances chiefly causing an increase in running speed, with the workers not distinguishing between conspecific and allospecific secretions, though small quantitative differences could be demonstrated between the speed and orientation reaction of workers of each species. The less volatile fraction of the Dufour gland secretion is used for territorial marking by foraging workers. This marking is specific for each species except between M. rubra and M. ruginodis.  相似文献   

20.
The floral volatiles of blackcurrant (Ribes nigrum) were collected in situ using the headspace technique. Eleven compounds were identified, including monoterpenes hydrocarbons and monoterpene ethers. The fragrance was emitted in a rhythmic manner, the maximum being in the middle of the photoperiod. Emission at 20°C was significantly higher than at 10°C. The rhythmic nature of emission seemed to cease under conditions of constant light. However, a slight rise in emission during the second period in continuous light may indicate a circadian control of emission. The significance of flower volatiles in relation to pollination is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号