共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of Prussian blue nanoparticles with bovine serum albumin: a multi-spectroscopic approach
Hongyu Zhou Xin Shi Yuanjie Fan Zhiying He Ling Ye 《Journal of biomolecular structure & dynamics》2018,36(1):254-261
Owning to their exceptional properties, Prussian blue nanoparticles (PBNPs) are promising in a variety of biomedical applications. In this scenario, understanding of how PBNPs interact and behave in biological systems is essential. Herein, the interaction of PBNPs with protein was investigated. Specifically, the citric acid stabilized PBNPs with a size of 10 nm were synthesized and characterized. The interactions of these PBNPs with the model protein, bovine serum albumin (BSA), were then probed by spectroscopic methods. It was found that the BSA intrinsic fluorescence was quenched upon addition of PBNPs due to the static interaction, suggesting the binding of PBNPs with BSA. Moreover, the synchronous fluorescence and circular dichroism spectra indicated the conformational change of BSA due to the presence of PBNPs. 相似文献
2.
Three novel p‐hydroxybenzoic acid derivatives (HSOP, HSOX, HSCP) were synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfamonomethoxine sodium, sulfamethoxazole and sulfachloropyridazine sodium) and characterized by elemental analysis, HNMR and MS. Interactions between derivatives and bovine serum albumin (BSA) were studied by fluorescence quenching spectra, UV–vis absorption spectra and time‐resolved fluorescence spectra. Based on fluorescence quenching calculation and Förster's non‐radioactive energy transfer theory, the values of the binding constants, basic thermodynamic parameters and binding distances were obtained. Experimental results indicated that the three derivatives had a strong ability to quench fluorescence from BSA and that the binding reactions of the derivatives with BSA were a static quenching process. Thermodynamic parameters showed that binding reactions were spontaneous and exothermic and hydrogen bond and van der Waals force were predominant intermolecular forces between the derivatives and BSA. Synchronous fluorescence spectra suggested that HSOX and HSCP had little effect on the microenvironment and conformation of BSA in the binding reactions but the microenvironments around tyrosine residues were disturbed and polarity around tyrosine residues increased in the presence of HSOP. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
Molecular interactions of thymol with bovine serum albumin: Spectroscopic and molecular docking studies 下载免费PDF全文
Leila Roufegarinejad Ali Jahanban‐Esfahlan Sanaz Sajed‐Amin Vahid Panahi‐Azar Mahnaz Tabibiazar 《Journal of molecular recognition : JMR》2018,31(7)
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol. 相似文献
4.
Probing into the binding interaction between medroxyprogesterone acetate and bovine serum albumin (BSA): spectroscopic and molecular docking methods 下载免费PDF全文
Fang Fang Dong‐qi Pan Min‐jie Qiu Ting‐Ting Liu Min Jiang Qi Wang Jie‐hua Shi 《Luminescence》2016,31(6):1242-1250
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern–Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA–FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT‐IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
In this work, we have studied the interaction between the anticancer drug doxorubicin (doxo) and condensed DNA, using optical tweezers. To perform this task, we use the protein bovine serum albumin (BSA) in the working buffer to mimic two key conditions present in the real intracellular environment: the condensed state of the DNA and the abundant presence of charged macromolecules in the surrounding medium. In particular, we have found that, when doxo is previously intercalated in disperse DNA, the drug hinders the DNA condensation process upon the addition of BSA in the buffer. On the other hand, when bare DNA is firstly condensed by BSA, doxo is capable to intercalate and to unfold the DNA condensates at relatively high concentrations. In addition, a specific interaction between BSA and doxo was verified, which significantly changes the chemical equilibrium of the DNA–doxo interaction. Finally, the presence of BSA in the buffer stabilizes the double‐helix structure of the DNA–doxo complexes, preventing partial DNA denaturation induced by the stretching forces. 相似文献
8.
The interaction of allylisothiocyanate with bovine serum albumin was monitored by fluorescence titration. The interaction
was weak with an apparent association constant of 2 × 102. The interaction was unaffected in the pH range of 5.0 to 8.3 and by NaCl. However, the addition of dioxane upto 4% increased
the value of the association constant. N-Methyl bovine serum albumin and bovine serum albumin with sulphydryl groups blocked
had the same affinity for allylisothiocyanate suggesting that amino and sulphydryl groups may not be involved in the interaction.
Polyacrylamide gel electrophoresis and estimation of available lysine suggested that there were perhaps two types of groups
involved in the interaction of allylisothiocyanate with bovine serum albumin.
An erratum to this article is available at . 相似文献
9.
We have developed a novel biodegradable, polymeric fiber construct that is coextruded using a wet-spinning process into a core-sheath format with a polysaccharide pre-hydrogel solution as the core fluid and poly(L-lactic acid) (PLLA) as the sheath. The biodegradable, biocompatible fibers were extruded from polymeric emulsions comprised of solutions of various molecular weights of PLLA dissolved in chloroform and containing dispersed, protein-free aqueous phases comprising up to 10% of the emulsion volume. Biologically sensitive agents can be loaded via a dispersed aqueous phase in the polymer, and/or directly into the polysaccharide. We show that this core-sheath fiber format will load a model protein that can be delivered for extended periods in vitro. Bovine serum albumin (BSA) was loaded into the fiber core as a model protein. We have shown that the greater the volume of the protein-free aqueous phase dispersed into the polymeric continuous-phase emulsion, the greater the total release of BSA encapsulated by a core gel comprised of 1% sodium alginate solution. We conclude this fiber format provides a promising vehicle for in vivo delivery of biological molecules. Its biocompatibility and biodegradability also allow for its use as a possible substrate for tissue engineering applications. 相似文献
10.
Lochnericine (LOC) is a component of Voacanga africana, which is a type of traditional medical food in Africa widely used for treating diseases. In this article, the interaction between LOC and bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Furthermore, Fourier transform infrared (FTIR), Raman and circular dichroism (CD) were used to investigate the structural changes of BSA. The experimental results consistently indicated that LOC changed the secondary structure of BSA. Three structure‐similar components were used to study the interference experiments. The molecular modeling results showed that LOC could bind within not only sites I and II, but also bind the cavity of subdomain IB. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. 相似文献
12.
The mechanism of the binding of 2-(4'-hydroxyphenylazo)benzoic acid (HABA) to bovine serum albumin was studied by relaxation methods as well as the binding isotherm using gel chromatography. A single relaxation was observed over a wide range of HABA concentration except at the extremes of high concentration where another slow process was observed. The concentration dependence of the reciprocal relaxation time of the fast process decreased monotonically with increase in concentration of HABA at constant polymer concentration. The data were analyzed on the basis of Brown's domain structure model and were found to be consistent with a sequential binding mechanism. The azohydrazon tautomerism of HABA was identified with the intramolecular step of the complex. The activation parameters of the step, determined from the temperature dependence of the relaxation time of the fast process, showed that this step is rate limited by an enthalpy barrier in both forward and backward directions. Comparison of the activation parameters with those of other serum albumin-ligand systems suggests that there is an enthalpy-entropy compensation in the activation process of the intramolecular step with the compensation temperature at about 270 K; the enthalpy-entropy compensation is thought to be related to the hydrophobic nature of the ligand. 相似文献
13.
Jie-hua Shi Dong-qi Pan Min Jiang Ting-Ting Liu Qi Wang 《Journal of biomolecular structure & dynamics》2017,35(10):2211-2223
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity. 相似文献
14.
残余牛血清白蛋白含量检测试剂盒抗干扰性研究 总被引:2,自引:0,他引:2
为了对目前使用的残余牛血清蛋白(BSA)含量检测试剂盒的抗干扰性进行评价,选用19个企业的12个品种,共计28份样品进行检测,包括冻干疫苗和液体疫苗两种剂型。分别检测15ng/ml BSA对照样品、二倍稀释的疫苗样品和添加15ng/ml BSA的疫苗样品。将添加BSA的疫苗样品的检测结果减去未添加BSA的疫苗样品的结果,其数值应当位于BSA对照样品均值的95%可信区间内。多数品种的疫苗添加BSA后回收率在85%和115%之间。个别制品的回收率在82%~83%之间。实验研究结果证明目前使用的BSA检测试剂盒具有较好的抗干扰作用。 相似文献
15.
Intermolecular interaction of fosinopril with bovine serum albumin (BSA): The multi‐spectroscopic and computational investigation 下载免费PDF全文
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction. 相似文献
16.
Chitosan membranes modified by contact with poly(acrylic acid) 总被引:1,自引:0,他引:1
M.S.P. De Lima M.S. Freire J.L.C. Fonseca M.R. Pereira 《Carbohydrate research》2009,344(13):1709-1715
In this work chitosan membranes modified by contact with poly(acrylic acid) (PAA) aqueous solution at two different temperatures (25 °C and 60 °C) were obtained. The pure chitosan (CS) membranes, as well as those treated with PAA (CSPAA_25 and CSPAA_60) were characterized by FTIR-ATR, water sorption capacity, thermal analysis (TG/DTG), and scanning electron microscopy (SEM). In addition, in vitro permeation experiments were carried out using metronidazol and sodium sulfamerazine aqueous solutions at 0.1% and 0.2% as model drugs. FTIR-ATR results showed the presence of absorption bands of and COO− indicating the formation of a polyelectrolyte complex between chitosan and poly(acrylic acid). The results also indicated that PAA penetrates deeper into the membrane at higher temperature (60 °C), forming a thicker complex layer. Polyelectrolyte complex formation as well as the influence of treatment temperature was confirmed by lower hydrophilicity, higher thermal stability, and lower permeability of the treated membranes. The results show that the methodology used is a simple and very efficient way to drastically change some membrane properties, especially their permeability. 相似文献
17.
Koichiro Aoki Isao Nagai Koichi Hiramatsu 《International journal of biological macromolecules》1984,6(5):293-294
A radioactive complex AP2.3 (A: bovine serum albumin, P: radioactive palmitic acid) has been prepared and incubated at pH 9 and 65°C for 60 min. Analysis by disc gel electrophoresis revealed three zones: zone 1, undenatured monomer; zone 1′, modified monomer; and zone 2, dimer. Counting of sliced gels indicated that only zone 1 was radioactive, meaning that fatty acids are released in the process 1→1′, but not in the process 1′+1′→2. In other words, fatty acids are released from albumin when native albumin is unfolded to form component 1′ during the incubation. The fatty acids released are concentrated on a particular species of albumin molecule which is not changed to component 1′. The percentage of component 1 (p) was 37%. This value agrees with that calculated by the equation which was proposed by us in a previous paper, p = (v/6) × 100%. In the present case v is 2.3. 相似文献
18.
Namrata Singh Darshana Pagariya Surbhi Jain Sunil Naik 《Journal of biomolecular structure & dynamics》2018,36(9):2449-2462
Serum albumins being the most abundant proteins in the blood and cerebrospinal fluid are significant carriers of essential transition metal ions in the human body. Studies of copper (II) complexes have gained attention because of their potential applications in synthetic, biological, and industrial processes. Study of binding interactions of such bioinorganic complexes with serum albumins improves our understanding of biomolecular recognition process essential for rational drug design. In the present investigation, we have applied quantitative approach to explore interactions of novel synthesized copper (II) complexes viz. [Cu(L1)(L2)ClO4] (complex I), [Cu(L2)(L3)]ClO4] (complex II) and [Cu(L4)2(H2O)2] (complex III) with bovine serum albumin (BSA) to evaluate their binding characteristics, site and mode of interaction. The fluorescence quenching of BSA initiated by complexation has been observed to be static in nature. The binding interactions are endothermic driven by entropic factors as confirmed by high sensitivity isothermal titration calorimetry. Changes in secondary and tertiary structure of protein have been studied by circular dichroism and significant reduction in α-helical content of BSA was observed upon binding. Site marking experiments with warfarin and ibuprofen indicated that copper complexes bind at site II of the protein. 相似文献
19.
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein‐ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA‐NPS), equine (ESA‐NPS), and leporine (LSA‐NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P212121) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA‐NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA‐NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. Proteins 2014; 82:2199–2208. © 2014 Wiley Periodicals, Inc. 相似文献
20.
Xiangyu Cao Zhijun Yang Yonglin He Ying Xia Yin He Jianli Liu 《Journal of molecular recognition : JMR》2019,32(7)
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies. 相似文献