首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non shivering thermogenesis of brown adipose tissue is due to the uncoupling protein (UCP), located in the inner mitochondrial membrane, which functions as a proton translocator and can thus uncouple mitochondrial respiration. We describe here the expression of UCP in Xenopus laevis oocytes after injection of UCP mRNA, which was transcribed in vitro. UCP seems to be correctly transported into mitochondria and integrated into the membrane, but we were not able to establish definitely the functionality of this UCP. We conclude that this expression system could be suitable for the study of the mitochondrial import mechanism but not for the examination of physiological properties of UCP.  相似文献   

2.
GDP在体外对大鼠脑线粒体脱耦联蛋白活性和表达的影响   总被引:1,自引:0,他引:1  
Xia C  Liu JZ  Xu Y 《生理学报》2008,60(4):492-496
本研究通过GDP体外处理大鼠脑组织块,观察GDP对脑线粒体脱耦联蛋白(uncoupling proteins,UCPs)活性、UCP4和UCP5表达的影响,以探讨嘌呤核苷酸对大鼠脑UCPs的调节作用.取Sprague-Dawley大鼠双侧大脑半球,将脑组织切成约8-10 mm3的脑组织块,与含1 mmol/L GDP的孵育介质共孵育30 min后,匀浆并差速离心分离提取大鼠脑组织线粒体,采用[3H]-GTP结合法测定UCPs活性,并以Scatehard作图法计算两者结合的解离常数(Kd)和最大结合量(Bmax);RT-PCR和Western blot分别检测UCP4和UCP5的mRNA和蛋白表达.结果显示,1 mmol/L GDP可降低体外大鼠脑组织线粒体中UCPs与[3H]-GTP结合的Bmax,提高Kd,但对脑纰织中UCP4和UCP5 mRNA和蛋白表达量的改变无统计学意义.上述结果提示,GDP可直接抑制体外大鼠脑组织中UCPs的活性,但并不影响UCP4和UCP5的表达.  相似文献   

3.
Outside the nervous system, members of the mitochondrial uncoupling protein (UCP) family have been proposed to contribute to control of body temperature and energy metabolism, and regulation of mitochondrial production of reactive oxygen species (ROS). However, the function of brain mitochondrial carrier protein 1 (BMCP1), which is highly expressed in brain, remains to be determined. To study BMCP1 expression and function in the nervous system, a high-affinity antibody to BMCP1 was generated and used to analyze tissue expression of BMCP1 protein in mouse. BMCP1 protein was highly expressed in heart and kidney, but not liver or lung. In the nervous system, BMCP1 was present in cortex, basal ganglia, substantia nigra, cerebellum, and spinal cord. Both BMCP1 mRNA and protein expression was almost exclusively neuronal. To study the effect of BMCP1 expression on mitochondrial function, neuronal (GT1-1) cell lines with stable overexpression of BMCP1 were generated. Transfected cells had higher State 4 respiration and lower mitochondrial membrane potential (psi(m)), consistent with greater mitochondrial uncoupling. BMCP1 expression also decreased mitochondrial production of ROS. These data suggest that BMCP1 can modify mitochondrial respiratory efficiency and mitochondrial oxidant production, and raise the possibility that BMCP1 might alter the vulnerability of brain to both acute injury and to neurodegenerative conditions.  相似文献   

4.
Uncoupling protein-2 (UCP2) is a member of the inner mitochondrial membrane anion-carrier superfamily. Although mRNA for UCP2 is widely expressed, protein expression is detected in only a few cell types, including macrophages. UCP2 functions by an incompletely defined mechanism, to reduce reactive oxygen species production during mitochondrial electron transport. We observed that the abundance of UCP2 in macrophages increased rapidly in response to treatments (rotenone, antimycin A and diethyldithiocarbamate) that increased mitochondrial superoxide production, but not in response to superoxide produced outside the mitochondria or in response to H2O2. Increased UCP2 protein was not accompanied by increases in ucp2 gene expression or mRNA abundance, but was due to enhanced translational efficiency and possibly stabilization of UCP2 protein in the inner mitochondrial membrane. This was not dependent on mitochondrial membrane potential. These findings extend our understanding of the homeostatic function of UCP2 in regulating mitochondrial reactive oxygen production by identifying a feedback loop that senses mitochondrial reactive oxygen production and increases inner mitochondrial membrane UCP2 abundance and activity. Reactive oxygen species-induction of UCP2 may facilitate survival of macrophages and retention of function in widely variable tissue environments.  相似文献   

5.
Uncoupling protein 1 (UCP1), the mammalian thermogenic mitochondrial protein, is found only in brown adipocytes, but its expression by immunohistochemistry is not homogeneous. Here we present evidence that the non-homogeneous pattern of immunostaining for UCP1 (referred to as the "Harlequin phenomenon") is particularly evident after acute and chronic cold (4C) stimulus and after administration of a specific beta(3)-adrenoceptor agonist (CL316,243). Accordingly, mRNA in situ expression confirmed the UCP1 non-homogeneous pattern of gene activation under conditions of adrenergic stimulus. Furthermore, morphometric analysis of immunogold-stained thin sections showed that UCP1-gold particle density was different among neighboring brown adipocytes with mitochondria of the same size and density. When the adrenergic stimulus was reduced in warm-acclimated animals (28C), UCP1 protein and mRNA expression was reduced and consequently the Harlequin phenomenon was barely visible. These data suggest the existence of an alternative and controlled functional recruitment of brown adipocytes in acute adrenergically stressed animals, possibly to avoid heat and metabolic damage in thermogenically active cells. Of note, the heat shock protein heme oxygenase 1 (HO1) is heterogeneously expressed in adrenergically stimulated brown adipose tissue and, specifically, cells expressing strong immunoreactivity for UCP1 also strongly express HO1.  相似文献   

6.
Tindaro M. Giardina 《BBA》2008,1777(2):118-129
Uncoupling protein-2 (UCP2) is a member of the inner mitochondrial membrane anion-carrier superfamily. Although mRNA for UCP2 is widely expressed, protein expression is detected in only a few cell types, including macrophages. UCP2 functions by an incompletely defined mechanism, to reduce reactive oxygen species production during mitochondrial electron transport. We observed that the abundance of UCP2 in macrophages increased rapidly in response to treatments (rotenone, antimycin A and diethyldithiocarbamate) that increased mitochondrial superoxide production, but not in response to superoxide produced outside the mitochondria or in response to H2O2. Increased UCP2 protein was not accompanied by increases in ucp2 gene expression or mRNA abundance, but was due to enhanced translational efficiency and possibly stabilization of UCP2 protein in the inner mitochondrial membrane. This was not dependent on mitochondrial membrane potential. These findings extend our understanding of the homeostatic function of UCP2 in regulating mitochondrial reactive oxygen production by identifying a feedback loop that senses mitochondrial reactive oxygen production and increases inner mitochondrial membrane UCP2 abundance and activity. Reactive oxygen species-induction of UCP2 may facilitate survival of macrophages and retention of function in widely variable tissue environments.  相似文献   

7.
Age related changes in brain cortex NO metabolism were investigated in mitochondria and cytosolic extracts from youth to adulthood. Decreases of 19%, 40% and 71% in NO production were observed in mitochondrial fractions from 3, 7, and 14 months old rats, respectively, as compared with 1-month-old rats. Decreased nNOS protein expression in 14 months old rats was also observed in mitochondria as compared with the nNOS protein expression in 1-month-old rats. Low levels of eNOS protein expression close to the detection limits and no iNOS protein expression were significantly detected in mitochondrial fraction for both groups of age. NO production in the cytosolic extracts also showed a marked decreasing tendency, showing higher levels than those observed in mitochondrial fractions for all groups of age. In the cytosolic extracts, however, the levels were stabilized in adult animals from 7 to 14 months. nNOS protein expression showed a similar age-pattern in cytosolic extracts for both groups of age, while the protein expression pattern for eNOS was higher expressed in adult rats (14 months) than in young animals. As well as in mitochondrial extracts iNOS protein expression was not significantly detected in cytosolic extracts at any age. RT-PCR assays indicated increased levels of nNOS mRNA in 1-month-old rats as compared with 14 months old rats, showing a similar pattern to that one observed for protein nNOS expression. A different aged pattern was observed for eNOS mRNA expression, being lower in 1-month-old rats as compared with 14 months old animals. iNOS mRNA was very low expressed in both groups of age, showing a residual iNOS mRNA that was not significantly detected. State 3 respiration rates were 78% and 85% higher when succinate and malate-glutamate were used as substrates, respectively, in 14 months rats as compared with 1-month-old rats. No changes were observed in state 4 respiration rates. These results could indicate 1 that nNOS and eNOS mRNA and protein expression can be age-dependent, and confirmed the nNOS origin for the mitochondrial NOS. During rat growth, the respiratory function seems to be modulated by NO produced by the different NOS enzymes: nNOS, eNOS and mtNOS present in the cytosol and in the mitochondria.  相似文献   

8.
Uncoupling protein 2 (UCP2) belongs to the mitochondrial anion carrier family and partially uncouples respiration from ATP synthesis when expressed in recombinant yeast mitochondria. We generated a highly sensitive polyclonal antibody against human UCP2. Its reactivity toward mitochondrial proteins was compared between wild type and ucp2(-/-) mice, leading to non-ambiguous identification of UCP2. We detected UCP2 in spleen, lung, stomach, and white adipose tissue. No UCP2 was detected in heart, skeletal muscle, liver, and brown adipose tissue. The level of UCP2 in spleen mitochondria is less than 1% of the level of UCP1 in brown adipose tissue mitochondria. Starvation and LPS treatments increase UCP2 level up to 12 times in lung and stomach, which supports the hypothesis that UCP2 responds to oxidative stress situations. Stimulation of the UCP2 expression occurs without any change in UCP2 mRNA levels. This is explained by translational regulation of the UCP2 mRNA. We have shown that an upstream open reading frame located in exon two of the ucp2 gene strongly inhibits the expression of the protein. This further level of regulation of the ucp2 gene provides a mechanism by which expression can be strongly and rapidly induced under stress conditions.  相似文献   

9.
10.
Mitochondrial uncoupling protein 1 (UCP1) mediates the thermogenic transport of protons through the inner mitochondrial membrane. This proton leak uncouples respiration from ATP synthesis. The current study assessed the possible contribution of UCP1 muscle gene transfer to impair mitochondrial respiration in a tissue lacking UCP1 gene expression. Rats received an intramuscular injection of plasmid pXC1 containing UCP1 cDNA in the right tibialis muscles, while left tibialis muscles were injected with empty plasmid as control. Ten days after DNA injection, mitochondria from tibialis anterior muscles were isolated and analyzed. UCP1 gene transfer resulted in protein expression as analyzed by inmunoblotting. Mitochondria isolated from UCP1-injected muscles showed a significant increase in state 2 and state 4 oxygen consumption rates and a decreased respiration control ratio in comparison to mitochondria from control muscles. Furthermore, UCP1-containing mitochondria had a lower membrane potential in those states (2 and 4) when compared with control mitochondria. Our results revealed that UCP1 muscle gene transfer is associated with an induced mitochondrial proton leak, which could contribute to increase energy expenditure.  相似文献   

11.
We investigate the effect of rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARgamma) with anti-inflammatory and anti-oxidative actions, on hippocampal injury and its roles in mitochondrial uncoupling protein 2 (UCP2) expression caused by transient global ischemia (TGI) in rats. Increased UCP2 expression was observed in mitochondria of hippocampal CA1 2-24h after TGI/reperfusion, with maximal expression levels at 6-18h. Administration of rosiglitazone to hippocampus 30min prior to the onset of TGI further enhanced mitochondrial UCP2 expression 2-6h following TGI/reperfusion. Rats subjected to TGI/reperfusion displayed a significant increase in lipid peroxidation, based on increased malondialdehyde (MDA) levels, in hippocampal CA1 mitochondria 2-6 h after reperfusion. Rosiglitazone significantly attenuated TGI/reperfusion-induced lipid peroxidation and suppressed hippocampal CA1 neuronal death based on the surviving neuronal counts. In conclusion, our results provide correlative evidence for the "PPARgamma-->UCP2-->neuroprotection" cascade in ischemic brain injury.  相似文献   

12.
A new cellular model for the study of brown adipocyte development and differentiation in vitro is presented. Preadipocytes isolated from brown adipose tissue (BAT) of the djungarian dwarf hamster Phodopus sungorus are able to proliferate and differentiate in vitro into true brown adipocytes able to express the BAT marker protein the uncoupling protein (UCP). Whereas basal UCP expression is very low, its mRNA levels as well as the UCP detected by immunoblotting are highly increased by beta-adrenergic stimulation. The novel, atypical beta-adrenergic compound D7114 (ICI Pharmaceuticals, Macclesfield, Cheshire, England) was found to increase the number of adipocytes as well as UCP mRNA and UCP content of mitochondria, indicating the involvement of an atypical or beta 3 receptor. Insulin was found to play an important role in brown adipocyte differentiation and mitochondrial development, whereas T3 seemed to be implicated more directly in UCP expression. In a defined, serum-free medium a synergistic stimulatory action of insulin and T3 on UCP expression was found, which seems to involve a pathway different from that of beta-adrenergic UCP stimulation.  相似文献   

13.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single approximately 33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 degrees C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 degrees C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

14.
15.
Brown adipose tissue (BAT) is the specific site for metabolic heat production in mammals. To establish a novel immortal brown adipocyte cell line, the stromal-vascular fraction containing preadipocytes was obtained from interscapular BAT of mice deficient of a tumor-suppressor gene p53. The p53-deficient cells, tentatively named as HB2 cells, could be cultured in vitro after repeated passages and differentiated into adipocytes in the presence of insulin, T3 and/or troglitazone, expressing some adipocyte-specific genes and accumulating intracellular lipid droplets. The mRNA level of uncoupling protein 1 (UCP1), a mitochondrial protein specifically present in brown adipocytes, was undetectable in HB2 preadipocytes, but increased after adipose differentiation. In HB2 adipocytes, UCP1 mRNA expression was markedly activated after stimulation of the beta-adrenergic receptor pathway. The mRNA of UCP2 and UCP3, recently cloned isoforms of UCP1, were also detected in HB2 adipocytes, but their levels were not influenced by adrenergic stimulation. Thus HB2 cells seem useful for in vitro studies of BAT and UCP functions.  相似文献   

16.
17.
Uncoupling protein 2 (UCP2) is suggested to be a regulator of reactive oxygen species production in mitochondria. We performed a detailed study of brain injury, including regional and cellular distribution of UCP2 mRNA, as well as measures of oxidative stress markers following permanent middle cerebral artery occlusion in UCP2 knockout (KO) and wild-type (WT) mice. Three days post ischemia, there was a massive induction of UCP2 mRNA confined to microglia in the peri-infarct area of WT mice. KO mice were less sensitive to ischemia as assessed by reduced brain infarct size, decreased densities of deoxyuridine triphosphate nick end-labelling (TUNEL)-labelled cells in the peri-infact area and lower levels of lipid peroxidation compared with WT mice. This resistance may be related to the substantial increase of basal manganese superoxide dismutase levels in neurons of KO mice. Importantly, we found a specific decrease of mitochondrial glutathione (GSH) levels in UCP2 expressing microglia of WT, but not in KO mice after ischemia. This specific association between UCP2 and mitochondrial GSH levels regulation was further confirmed using lipopolysaccharide models of peripheral inflammation, and in purified peritoneal macrophages. Moreover, our data imply that UCP2 is not directly involved in the regulation of ROS production but acts by regulating mitochondrial GSH levels in microglia.  相似文献   

18.
Ji C  Guo W  Zhang M  Lu X  Ni Y  Guo X 《Gene》2012,491(2):158-164
Uncoupling proteins, a family of proton carriers located in the inner mitochondrial membrane, have important functions in energy metabolism and free radical generation that are relevant to mitochondrial function. Five family members have been identified, UCP1-5, that have distinct tissue distributions, and differences and similarities in physiological function. Uncoupling protein 4 (UCP4) is highly expressed and has a unique function in brain. UCP4 appears to be involved with metabolism in neurons and adipocytes, but conclusions on this protein have been controversial. Here, we used Caenorhabditis elegans to explore the functions of ucp-4, particularly in fat metabolism. Our results showed that UCP4 knockdown induced an obese phenotype and impaired the insulin-like pathway, possibly via oxidative stress in C. elegans. This highlights the importance of studying the role of ucp-4 in fat metabolism.  相似文献   

19.
In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-[35S]methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria.  相似文献   

20.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号