首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   93篇
  国内免费   136篇
  2024年   2篇
  2023年   23篇
  2022年   23篇
  2021年   40篇
  2020年   30篇
  2019年   55篇
  2018年   39篇
  2017年   25篇
  2016年   43篇
  2015年   40篇
  2014年   30篇
  2013年   42篇
  2012年   27篇
  2011年   29篇
  2010年   21篇
  2009年   41篇
  2008年   34篇
  2007年   36篇
  2006年   48篇
  2005年   32篇
  2004年   25篇
  2003年   27篇
  2002年   25篇
  2001年   22篇
  2000年   15篇
  1999年   22篇
  1998年   16篇
  1997年   12篇
  1996年   11篇
  1995年   13篇
  1994年   12篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   7篇
  1979年   1篇
  1978年   2篇
排序方式: 共有930条查询结果,搜索用时 109 毫秒
1.
The distribution patterns of the leathery sea anemone, Heteractis crispa, which contains an algal endosymbiont (zooxanthellae) and anemonefish, were investigated in relation to size distribution on a shallow fringing reef (3.2 ha, 0–4 m depth) in Okinawa, Japan. Individual growth and movements were also examined. Large individuals (>1,000 cm2) inhabited reef edges up to a depth of 4 m, while small anemone (<500 cm2) inhabited shallow reefs including inner reef flats. Individuals rarely moved, and their sizes were significantly correlated with their water depths. Growth of small anemones was negatively correlated with their distance from the reef edge, suggesting that reef edges provide more prey and lower levels of physiological stress. This study suggested that deep reef edges are suitable habitats for H. crispa. Large anemones were inhabited by large Amphiprion perideraion or large Amphiprion clarkii, both of which are effective defenders against anemone predators. Anemones that settle in deep reef edges may enjoy a higher survival rate and attain a large size because of their symbiotic relationship with anemonefish. However, early settlers do not harbor anemonefish. Their mortality rate would be higher in the deep edges than in shallow edges, the complicated topography of which provides refuge.  相似文献   
2.
Trap sampling over reefs in deep (mean = 20 m) and shallow (mean = 10 m) waters along c. 1500 km of coastline in tropical north‐western Australia during both day and night and in wet and dry periods yielded 23 377 fishes, representing 32 families, 58 genera and 119 species. Individuals of the Serranidae, Lutjanidae, Lethrinidae and Carangidae contributed 88·9% to the total catch. The ichthyofaunal compositions of the Kimberley, Canning and Pilbara bioregions were relatively discrete. Species composition was influenced far more by location (latitude) than by water depth, period and time of day, and underwent a gradational change southwards. The latter change reflected differences in the trends exhibited by the relative abundances of certain species with increasing latitude and the confinement of other species largely to particular regions. The three most abundant species, i.e. Lethrinus sp. 3, Lutjanus carponotatus and Lethrinus laticaudis contributed 34·8, 20·8 and 11·6% to the total catch, respectively. The first species was rarely recorded in the two most northern locations and was abundant in the four most southern locations, whereas the last two species were relatively more abundant in northern than in southern locations. Lutjanus bitaeniatus and Lutjanus johnii were found exclusively at the two locations in the Kimberley region, whereas Abalistes stellatus, Pentapodus emeryii and Lethrinus nebulosus were not caught in this region but were found in both locations of the Canning and Pilbara regions. The species composition in deep and shallow waters at each location almost invariably differed significantly between day and night and between dry and wet periods, with species such as L. bitaeniatus, L. johnii, Lutjanus sebae and A. stellatus being more abundant over deep reefs, whereas L. carponotatus, L. laticaudis, Siganus fuscescens and Lethrinus lentjan were more numerous over shallow reefs. Species such as L. johnii and Lethrinus atkinsoni were relatively more important in night‐time than daytime catches, whereas the reverse applied to Lethrinus lentjan, L. laticaudis and Choerodon cyanodus. Lethrinus sp. 3 and L. laticaudis were relatively more important in catches during the dry than wet period.  相似文献   
3.
Wavefront shaping can compensate the wavefront distortions in deep tissue focusing, leading to an improved penetration depth. However, when using the backscattered signals as the feedback, unexpected compensation bias may be introduced, resulting in focusing position deviations or even no focus in the illumination focal plane. Here we investigated the reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing by measuring the position deviations between the foci in the illumination focal plane and the epi‐detection plane. The experimental results show that when the penetration depth reaches 150 μm in mouse brain tissue (with scattering coefficient ~22.42 mm?1) using a 488 nm laser and an objective lens with 0.75 numerical aperture, the center of the real focus will deviate out of one radius range of the Airy disk while the optimized focus in the epi‐detection plane maintained basically at the center. With the penetration depth increases, the peak to background ratio of the focus in the illumination focal plane decreases faster than that in the epi‐detection plane. The results indicate that when the penetration depth reaches 150 μm, feedback based on backscattered signals will make wavefront shaping lose its reliability, which may provide a guidance for applications of non‐invasive precise optogenetics or deep tissue optical stimulation using wavefront shaping methods. A, Intensity distribution in the epi‐detection plane and the illumination focal plane before and after correction, corresponding to brain sections with 250 and 300 μm thickness, respectively. Scale bar is 2 μm. B, Averaged focusing deviations in the epi‐detection plane (optimized) and the illumination focal plane (monitored) after compensation. The unit of the ordinate is one Airy disk diameter. Black dashed line represents one Airy disk radius. Bars represent the SE of each measurement set.   相似文献   
4.
5.
目的:探讨光动力疗法(PDT)辅助治疗轻中度牙周炎患者的临床疗效。方法:选取我院2016年1月-2017年8月收治的轻中度牙周炎患者46例为研究对象,共选取患牙276颗,随机分为观察组与对照组,每组138颗患牙,对照组予以龈下刮治术和根面平整术(SRP)治疗,观察组在对照组的基础上联合PDT治疗,比较治疗前、治疗后1个月、2个月、3个月观察两组患者的牙周袋探诊深度(PD)、探诊出血(BOP)阳性率、出血指数(BI)。结果:治疗后1个月、2个月、3个月,两组PD均随着时间的推移逐渐变浅(P0.05),且观察组治疗后各时间点均浅于对照组(P0.05);两组BOP阳性率均较治疗前降低,且观察组治疗后各时间均低于对照组(P0.05);两组BI随着时间的推移呈逐渐下降趋势(P0.05),且观察组治疗后各时间点BI均低于对照组(P0.05)。结论:PDT辅助治疗轻中度牙周炎患者的临床疗效较好,其能减小PD,降低BI和BOP阳性率。  相似文献   
6.
7.
Sodium and oxygen are prevalent impurities in kesterite solar cells. Both elements are known to strongly impact performance of the kesterite devices and can be connected to efficiency improvements seen after heat treatments. The sodium distribution in the kesterite absorber is commonly reported, whereas the oxygen distribution has received less attention. Here, a direct relationship between sodium and oxygen in kesterite absorbers is established using secondary ion mass spectrometry and explained by defect analyses within the density functional theory. The calculations reveal a binding energy of 0.76 eV between the substitutional defects NaCu and OS in the nearest neighbor configuration, indicating an abundance of Na? O complexes in kesterite absorbers at relevant temperatures. Oxygen incorporation is studied by introducing isotopic 18O at different stages of the Cu2ZnSnS4/Mo/soda‐lime glass baseline processing. It is observed that oxygen from the Mo back contact and contaminations during the sulfurization are primary contributors to the oxygen distribution. Indeed, unintentional oxygen incorporation leads to immobilization of sodium. This results in a strong correlation between sodium and oxygen, in excellent agreement with the theoretical calculations. Consequently, oxygen availability should be monitored to optimize postdeposition heat treatments to control impurities in kesterite absorbers and ultimately, the solar cell efficiency.  相似文献   
8.
Whole genome sequences (WGS) greatly increase our ability to precisely infer population genetic parameters, demographic processes, and selection signatures. However, WGS may still be not affordable for a representative number of individuals/populations. In this context, our goal was to assess the efficiency of several SNP genotyping strategies by testing their ability to accurately estimate parameters describing neutral diversity and to detect signatures of selection. We analysed 110 WGS at 12× coverage for four different species, i.e., sheep, goats and their wild counterparts. From these data we generated 946 data sets corresponding to random panels of 1K to 5M variants, commercial SNP chips and exome capture, for sample sizes of five to 48 individuals. We also extracted low‐coverage genome resequencing of 1×, 2× and 5× by randomly subsampling reads from the 12× resequencing data. Globally, 5K to 10K random variants were enough for an accurate estimation of genome diversity. Conversely, commercial panels and exome capture displayed strong ascertainment biases. Besides the characterization of neutral diversity, the detection of the signature of selection and the accurate estimation of linkage disequilibrium (LD) required high‐density panels of at least 1M variants. Finally, genotype likelihoods increased the quality of variant calling from low coverage resequencing but proportions of incorrect genotypes remained substantial, especially for heterozygote sites. Whole genome resequencing coverage of at least 5× appeared to be necessary for accurate assessment of genomic variations. These results have implications for studies seeking to deploy low‐density SNP collections or genome scans across genetically diverse populations/species showing similar genetic characteristics and patterns of LD decay for a wide variety of purposes.  相似文献   
9.
Species trees have traditionally been inferred from a few selected markers, and genome‐wide investigations remain largely restricted to model organisms or small groups of species for which sampling of fresh material is available, leaving out most of the existing and historical species diversity. The genomes of an increasing number of species, including specimens extracted from natural history collections, are being sequenced at low depth. While these data sets are widely used to analyse organelle genomes, the nuclear fraction is generally ignored. Here we evaluate different reference‐based methods to infer phylogenies of large taxonomic groups from such data sets. Using the example of the Oleeae tribe, a worldwide‐distributed group, we build phylogenies based on single nucleotide polymorphisms (SNPs) obtained using two reference genomes (the olive and ash trees). The inferred phylogenies are overall congruent, yet present differences that might reflect the effect of distance to the reference on the amount of missing data. To limit this issue, genome complexity was reduced by using pairs of orthologous coding sequences as the reference, thus allowing us to combine SNPs obtained using two distinct references. Concatenated and coalescence trees based on these combined SNPs suggest events of incomplete lineage sorting and/or hybridization during the diversification of this large phylogenetic group. Our results show that genome‐wide phylogenetic trees can be inferred from low‐depth sequence data sets for eukaryote groups with complex genomes, and histories of reticulate evolution. This opens new avenues for large‐scale phylogenomics and biogeographical analyses covering both the extant and the historical diversity stored in museum collections.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号