首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selective microscopic imaging of the plasma membrane and adjacent structures by total internal reflection fluorescence (TIRF) microscopy is a versatile and frequently used technique in cell biology. A reduction of imaging artifacts in objective‐type TIRF microscopy can be achieved by circular or multi‐spot laser illumination or by using noncoherent light sources that are projected into the back focal plane as a light annulus. Light‐emitting diode (LED)‐based TIRF excitation is a recent advancement of the latter strategy. While some basic principles of LED‐TIRF remain the same as in laser‐based methods, the calculation of penetration depth, the flatness of illumination and the amount of available illumination power differ. This study provides the theoretical framework for the construction and adjustment of LED‐TIRF. Using state‐of‐the art high power LED emitters, LED‐TIRF achieves excitation efficiencies that are comparable to laser‐based systems and homogenously illuminate the entire field of view, thus, allowing variation of the penetration depth or quantitative photobleaching‐assisted imaging protocols. Using autofluorescent transmembrane, soluble and membrane‐attached fusion proteins, we provide examples for a photobleaching‐based assessment of the exchange kinetics of proteins within living human endothelial cells.  相似文献   

2.
Two‐photon microscopy (2PM) is one of the most widely used tools for in vivo deep tissue imaging. However, the spatial resolution and penetration depth are still limited due to the strong scattering background. Here we demonstrate a two‐photon focal modulation microscopy. By utilizing the modulation and demodulation techniques, background rejection capability is enhanced, thus spatial resolution and imaging penetration depth are improved. Compared with 2PM, the transverse resolution is increased by 70%, while the axial resolution is increased to 2‐fold. Furthermore, when applied in conventional 2PM mode, it can achieve inertial‐free scanning in either transverse or axial direction with in principle unlimited scanning speed. Finally, we applied 2PFMM in thick scattering samples to further examine the imaging performance. The results show that the signal‐to‐background ratio of 2PFMM can be improved up to five times of 2PM at the depth of 500 μm. Fluorescent imaging in the mouse brain tissue. 3D Thy1‐GFP hippocampal neurons imaged by (A) 2PM compared with (B) 2PFMM; (C‐H) xy maximum‐intensity projection imaged by 2PM compared with 2PFMM. Scale bar 50 μm.   相似文献   

3.
Inhomogeneity in thick biological specimens results in poor imaging by light microscopy, which deteriorates as the focal plane moves deeper into the specimen. Here, we have combined selective plane illumination microscopy (SPIM) with wavefront sensor adaptive optics (wao). Our waoSPIM is based on a direct wavefront measure using a Hartmann-Shack wavefront sensor and fluorescent beads as point source emitters. We demonstrate the use of this waoSPIM method to correct distortions in three-dimensional biological imaging and to improve the quality of images from deep within thick inhomogeneous samples.  相似文献   

4.
Multiphoton microscopy has become popular in studying dermal nanoparticle penetration. This necessitates studying the imaging parameters of multiphoton microscopy in skin as an imaging medium, in terms of achievable detection depths and the resolution limit. This would simulate real‐case scenarios rather than depending on theoretical values determined under ideal conditions. This study has focused on depth profiling of sub‐resolution gold nanoparticles (AuNP) in reconstructed (fixed and unfixed) and human skin using multiphoton microscopy. Point spread functions (PSF) were determined for the used water‐immersion objective of 63×/NA = 1.2. Factors such as skin‐tissue compactness and the presence of wrinkles were found to deteriorate the accuracy of depth profiling. A broad range of AuNP detectable depths (20–100 μm) in reconstructed skin was observed. AuNP could only be detected up to ~14 μm depth in human skin. Lateral (0.5 ± 0.1 μm) and axial (1.0 ± 0.3 μm) PSF in reconstructed and human specimens were determined. Skin cells and intercellular components didn't degrade the PSF with depth. In summary, the imaging parameters of multiphoton microscopy in skin and practical limitations encountered in tracking nanoparticle penetration using this approach were investigated. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
We report a flexible light‐sheet fluorescence microscope (LSFM) designed for studying dynamic events in cardiac tissue at high speed in 3D and the correlation of these events to cell microstructure. The system employs two illumination‐detection modes: the first uses angle‐dithering of a Gaussian light sheet combined with remote refocusing of the detection plane for video‐rate volumetric imaging; the second combines digitally‐scanned light‐sheet illumination with an axially‐swept light‐sheet waist and stage‐scanned acquisition for improved axial resolution compared to the first mode. We present a characterisation of the spatial resolution of the system in both modes. The first illumination‐detection mode achieves dual spectral‐channel imaging at 25 volumes per second with 1024 × 200 × 50 voxel volumes and is demonstrated by time‐lapse imaging of calcium dynamics in a live cardiomyocyte. The second illumination‐detection mode is demonstrated through the acquisition of a higher spatial resolution structural map of the t‐tubule network in a fixed cardiomyocyte cell.  相似文献   

7.
In this paper, we propose a new far-field nanofocusing lens with elongated depth of focus (DOF) under near-infrared (NIR) wavelength. The surface plasmons can be excited by using the hybrid metal–insulator–metal (MIM) subwavelength structure under the NIR wavelength. The constructive interference of surface plasmons launched by the subwavelength MIM structure can form a nanoscale focus that is modulated by the novel metal grating from the near field to the far field. The numerical simulations demonstrated that a nanoscale focal spot (in plane focal area 0.177λ 2) with elongated DOF (3.358λ) and long focal length (5.084λ) can be realized with reasonably designing parameters of the lens. By controlling the positions of the inner radii of each slit ring and the grating width, the focal length, focal spot, and DOF can be tuned easily. This design method, which can obtain the nanoscale focal spot and micron DOF in far field under NIR illumination, paved the road for utilizing the NIR plasmonic lens in superresolution optical microscopic imaging, optical trapping, biosensing, and complex wavefront/beam shaper.  相似文献   

8.
We demonstrate the first, to our knowledge, integration of stimulated emission depletion (STED) with selective plane illumination microscopy (SPIM). Using this method, we were able to obtain up to 60% improvements in axial resolution with lateral resolution enhancements in control samples and zebrafish embryos. The integrated STED-SPIM method combines the advantages of SPIM with the resolution enhancement of STED, and thus provides a method for fast, high-resolution imaging with >100 μm deep penetration into biological tissue.  相似文献   

9.
Our ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular‐level structural details of GI mucosa over a large tissue area. In this article, we report a fiber‐optic‐based micro‐optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular‐level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.48 μm in air and a transverse resolution of 4.8 μm with a depth‐of‐focus (DOF) of ~150 μm. To mitigate the issue of limited DOF, we used a rigid sheath to maintain a circular lumen and center the distal‐end optics. The sensitivity is tested to be 98.8 dB with an illumination power of 15.6 mW on the sample. With fresh swine colon tissues imaged ex vivo, detailed structures such as crypt lumens and goblet cells can be clearly resolved, demonstrating that this fiber‐optic μOCT system is capable of visualizing cellular‐level morphological features. We also demonstrate that time‐lapsed frame averaging and imaging speckle reduction are essential for clearly visualizing cellular‐level details. Further development of a clinically viable μOCT endomicroscope is likely to improve the diagnostic outcome of GI cancers.   相似文献   

10.
We demonstrate three-dimensional (3D) super-resolution live-cell imaging through thick specimens (50-150 μm), by coupling far-field individual molecule localization with selective plane illumination microscopy (SPIM). The improved signal-to-noise ratio of selective plane illumination allows nanometric localization of single molecules in thick scattering specimens without activating or exciting molecules outside the focal plane. We report 3D super-resolution imaging of cellular spheroids.  相似文献   

11.
Non-linear excitation microscopy is considered an ideal spectroscopic method for imaging thick tissues in vivo due to the reduced scattering of infrared radiation. Although imaging has been reported on brain neocortex at 600-800 mum of depth, much less uniform tissues, such as lymphonodes, are characterized by highly anisotropic light scattering that limits the penetration length. We show that the most severe limitation for deep imaging of lymphonodes appears to be the tissue scattering and the diffuse fluorescence emission of labeled cell (lymphocytes) in layers above the focusing plane. We report a study of the penetration depth of the infrared radiation in a model system and in ex vivo lymphonodes and discuss the possibility to apply Fourier filtering to the images in order to improve the observation depth.  相似文献   

12.
Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log–linear manner with the distance from the irradiated surface as predicted by Beer's law. The amount of fluorescence was proportional to chlorophyll concentration for chlorophyll solutions given epi‐illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi‐illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50–70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer–Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively.  相似文献   

13.
Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.   相似文献   

14.
Photoacoustic microscopy (PAM) can be classified as optical resolution (OR)‐PAM and acoustic resolution (AR)‐PAM depending on the type of resolution achieved. Using microelectromechanical systems (MEMS) scanner, high‐speed OR‐PAM system was developed earlier. Depth of imaging limits the use of OR‐PAM technology for many preclinical and clinical imaging applications. Here, we demonstrate the use of a high‐speed MEMS scanner for AR‐PAM imaging. Lateral resolution of 84 μm and an axial resolution of 27 μm with ~2.7 mm imaging depth was achieved using a 50 MHz transducer‐based AR‐PAM system. Use of a higher frequency transducer at 75 MHz has further improved the resolution characteristics of the system with a reduction in imaging depth and a lateral resolution of 53 μm and an axial resolution of 18 μm with ~1.8 mm imaging depth was achieved. Using the two‐axis MEMS scanner a 2 × 2 .5 mm2 area was imaged in 3 seconds. The capability of achieving acoustic resolution images using the MEMS scanner makes it beneficial for the development of high‐speed miniaturized systems for deeper tissue imaging.   相似文献   

15.
One of the key limitations for the clinical translation of photoacoustic imaging is penetration depth that is linked to the tissue maximum permissible exposures (MPE) recommended by the American National Standards Institute (ANSI). Here, we propose a method based on deep learning to virtually increase the MPE in order to enhance the signal‐to‐noise ratio of deep structures in the brain tissue. The proposed method is evaluated in an in vivo sheep brain imaging experiment. We believe this method can facilitate clinical translation of photoacoustic technique in brain imaging, especially in transfontanelle brain imaging in neonates.  相似文献   

16.
Skull optical clearing window permits us to perform in vivo cortical imaging without craniotomy, but mainly limits to visible (vis)‐near infrared (NIR)‐I light imaging. If the skull optical clearing window is available for NIR‐II, the imaging depth will be further enhanced. Herein, we developed a vis‐NIR‐II skull optical clearing agents with deuterium oxide instead of water, which could make the skull transparent in the range of visible to NIR‐II. Using a NIR‐II excited third harmonic generation microscope, the cortical vasculature of mice could be clearly distinguished even at the depth of 650 μm through the vis‐NIR‐II skull clearing window. The imaging depth after clearing is close to that without skull, and increases by three times through turbid skull. Furthermore, the new skull optical clearing window promises to realize NIR‐II laser‐induced targeted injury of cortical single vessel. This work enhances the ability of NIR‐II excited nonlinear imaging techniques for accessing to cortical neurovasculature in deep tissue.  相似文献   

17.
Two-photon microscopy is indispensable for deep tissue and intravital imaging. However, current technology based on single-beam point scanning has reached sensitivity and speed limits because higher performance requires higher laser power leading to sample degradation. We utilize a multifocal scanhead splitting a laser beam into a line of 64 foci, allowing sample illumination in real time at full laser power. This technology requires charge-coupled device field detection in contrast to conventional detection by photomultipliers. A comparison of the optical performance of both setups shows functional equivalence in every measurable parameter down to penetration depths of 200 microm, where most actual experiments are executed. The advantage of photomultiplier detection materializes at imaging depths >300 microm because of their better signal/noise ratio, whereas only charge-coupled devices allow real-time detection of rapid processes (here blood flow). We also find that the point-spread function of both devices strongly depends on tissue constitution and penetration depth. However, employment of a depth-corrected point-spread function allows three-dimensional deconvolution of deep-tissue data up to an image quality resembling surface detection.  相似文献   

18.
In this study, a novel photoacoustic microscopy (PAM) probe integrating white‐light microscopy (WLM) modality that provides guidance for PAM imaging and complementary information is implemented. One single core of an imaging fiber bundle is employed to deliver a pulsed laser for photoacoustic excitation for PAM mode, which provides high resolution with deep penetration. Meanwhile, for WLM mode, the imaging fiber bundle is used to transmit two‐dimensional superficial images. Lateral resolution of 7.2 μm for PAM is achieved. Since miniature components are used, the probe diameter is only 1.7 mm. Imaging of phantom and animals in vivo is conducted to show the imaging capability of the probe. The probe has several advantages by introducing the WLM mode, such as being able to conveniently identify regions of interest and align the focus for PAM mode. The prototype of an endoscope shows potential to facilitate clinical photoacoustic endoscopic applications.  相似文献   

19.
Thecadinium inclinatum Balech and four new marine sand‐dwelling species of the dinoflagellate genus Thecadinium are described from the sandy beaches along the coast of Shikoku, Japan. Thecadinium inclinatum is thecate, bilaterally flattened, elliptical in shape, non‐photosynthetic, and measures 55–75 μ in length and 43–59 μ in depth. The epi‐ and hypotheca theca are semielliptical and the thecal surface is smooth with small pores. The plate formula is Po (pore plate), 3′, 7″,?c,?s, 5″′1″′.Thecadinium ovatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and almost oval in lateral view. The cell measures 40–50 μm in length and 33–40 μm in depth. The hypotheca has two or three strong antapical spines. The plate formula is 3′, 6″,6c, 5s?, 5″′, 1″′. Thecadinium striatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and somewhat elliptical in lateral view. The cell is 33–41 μm long and 23–30 μm deep. Several striae are present on the hypotheca. The plate formula is 3′, 6″, 6c, 5s?, 5″′, 1″″. Thecadinium yashimaense sp. nov. is bilaterally flattened, photosynthetic and elliptical in ventral view. The cell is 44–65 μm long and 23–36 μm wide. The thecal surface is smooth with small pores. he cingulum forms a steep left–handed spiral. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″′. Thecadinium arenarium sp. nov. is somewhat wedge‐shaped in ventral view, photosynthetic with brownish chloroplasts and almost rounded in cross section. The cingulum forms a steep left‐handed spiral. The cell measures 35–41 μm in length and 25–30 μm in width. The thecal surface is weakly reticulated with small pores. The hypotheca is conical. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″″.  相似文献   

20.
Multiphoton excitation fluorescence imaging generates an optical section of sample by restricting fluorophore excitation to the plane of focus. High photon densities, achieved only in the focal volume of the objective, are sufficient to excite the fluorescent probe molecules by density-dependent, multiphoton excitation processes. We present comparisons of confocal with multiphoton excitation imaging of identical optical sections within a sample. These side-by-side comparisons of imaging modes demonstrate a significant advantage of multiphoton imaging; data can be obtained from deeper within biological specimens. Observations on a variety of biological samples showed that in all cases there was at least a twofold improvement in the imaging penetration depth obtained with multiphoton excitation relative to confocal imaging. The more pronounced degradation in image contrast deep within a confocally imaged sample is primarily due to scattered emission photons, which reduce the signal and increase the local background as measurements of point spread functions indicated that resolution does not significantly change with increasing depth for either mode of microscopy. Multiphoton imaging does not suffer from degradation of signal-to-background to nearly the same extent as confocal imaging because this method is insensitive to scatter of the emitted signal. Direct detection of emitted photons using an external photodetector mounted close to the objective (possible only in a multiphoton imaging system) improves system sensitivity and the utilization of scattered emission photons for imaging. We demonstrate that this technique provides yet further improvements in the capability of multiphoton excitation imaging to produce good quality images from deeper within tissue relative to confocal imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号