首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   2篇
  2023年   1篇
  2022年   4篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有18条查询结果,搜索用时 234 毫秒
1.
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   
2.
MYCN amplification is an independent risk factor for poor prognosis in neuroblastoma (NB), but its protein product cannot be directly targeted because of protein structure. Thus, this study aimed to explore novel ways to indirectly target N-Myc by regulating its post-translational modifications (PTMs) and therefore protein stability. N-Myc coimmunoprecipitation combined with HPLC–MS/MS identified 16 PTM residues and 114 potential N-Myc-interacting proteins. Notably, both acetylation and ubiquitination were identified on lysine 199 of N-Myc. We then discovered that p300, which can interact with N-Myc, modulated the protein stability of N-Myc in MYCN-amplified NB cell lines and simultaneously regulated the acetylation level and ubiquitination level on lysine-199 of N-Myc protein in vitro. Furthermore, p300 correlated with poor prognosis in NB patients. Taken together, p300 can be considered as a potential therapeutic target to treat MYCN-amplified NB patients, and other identified PTMs and interacting proteins also provide potential targets for further study.  相似文献   
3.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
4.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   
5.
Type-I ribosome-inactivating protein-trichosanthin (TCS) exhibits selective cytotoxicity toward different types of cells. It is believed that the cytotoxicity results from the inhibition of ribosomes to decrease protein synthesis, thereby indicating that there are specific mechanisms for TCS entry into target cells to reach the ribosomes. Low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) is a large scavenger receptor that is responsible for the binding and endocytosis of diverse biological ligands on the cell surface. In this study, we demonstrated that 2 choriocarcinoma cell lines can significantly bind and internalize TCS. In contrast, Hela cell line displayed no obvious TCS binding and endocytosis. Furthermore LRP1 gene silencing in JAR and BeWo cell lines blocked TCS binding; TCS could also interact with LRP1.The results of our study established that LRP1 was a major receptor for phagocytosis of TCS in JAR and BeWo cell lines and might be the molecular basis of TCS abortificient and anti-choriocarcinoma activity.  相似文献   
6.
Hepatitis C virus (HCV) is a positive-strand RNA virus responsible for chronic liver disease and hepatocellular carcinoma (HCC). RacGTPase-activating protein 1 (RacGAP1) plays an important role during GTP hydrolysis to GDP in Rac1 and CDC42 protein and has been demonstrated to be upregulated in several cancers, including HCC. However, the molecular mechanism leading to the upregulation of RacGAP1 remains poorly understood. Here, we showed that RacGAP1 levels were enhanced in HCV cell-culture-derived (HCVcc) infection. More importantly, we illustrated that RacGAP1 interacts with the viral protein NS5B in mammalian cells. The small interfering RNA (siRNA)-mediated knockdown of RacGAP1 in human hepatoma cell lines inhibited replication of HCV RNA, protein, and production of infectious particles of HCV genotype 2a strain JFH1. Conversely, these were reversed by the expression of a siRNA-resistant RacGAP1 recombinant protein. In addition, viral protein NS5B polymerase activity was significantly reduced by silencing RacGAP1 and, vice versa, was increased by overexpression of RacGAP1 in a cell-based reporter assay. Our results suggest that RacGAP1 plays a crucial role in HCV replication by affecting viral protein NS5B polymerase activity and holds importance for antiviral drug development.  相似文献   
7.
生长抑制因子(GIF)与G蛋白Rab3a直接相互作用   总被引:6,自引:1,他引:5  
生长抑制因子(growth inhibitory factor, GIF), 又称金属硫蛋白-3, 为68个氨基酸组成的脑特异性金属硫蛋白, 具有广泛的生理功能; GIF可能与阿尔茨海默氏症(Alzheimer's)病理相关, 在Alzheimer's脑提取物存在下, 还对神经细胞具有特异的生长抑制活性.然而, 对其发挥生长抑制作用的分子机制并不清楚.运用酵母双杂交系统从人脑cDNA文库中筛选与GIF相互作用因子,从4.1×106个人脑cDNA文库转化子中,首次筛选到Ras家族G蛋白Rab3a C端,包含87个氨基酸的片段能与GIF相互作用;用PCR自人胎盘总cDNA中获得包含完整Rab3a编码序列的cDNA;通过酵母双杂交实验表明,全长Rab3a蛋白亦能与GIF相互作用.免疫共沉淀和蛋白质印迹实验进一步验证了GIF与Rab3a在哺乳动物细胞中可以相互作用; 而且, Rab3a是以GTP结合形式(GTP-Rab3a)与GIF发生相互作用.  相似文献   
8.
Substrates dissociate dopamine transporter oligomers   总被引:1,自引:0,他引:1  
Substrate-induced endocytic trafficking of dopamine transporter (DAT) has been observed, but little is known about the regulation of DAT oligomerization by substrate. The present study investigates the effect on substrates on DAT oligomerization and explores a potential link with the presence of DAT at the cell surface in human embryonic kidney cells transiently or stably expressing N-terminal tagged DAT constructs. Dopamine (100 μM) or amphetamine (2–10 μM) reduced Myc-DAT coimmunoprecipitated along with Flag-DAT (oligomeric DAT) in tandem with a reduction in surface DAT determined by biotinylation. Dopamine (10–1000 μM) and amphetamine (0.2–200 μM) reduced DAT oligomerization as assessed by cross-linking with copper sulfate phenanthroline or Cu2+. Inhibition of endocytosis by 10 μM phenylarsine oxide or 450 mM sucrose counteracted the effect of 10 μM DA or 2 μM amphetamine in reducing DAT cross-linking. In addition to overall similarities between the results with the two cross-linking agents and between the results with the two different endocytosis inhibitors, some differences were noted as well, likely related to the efficiency of the cross-linking process and the sulfhydryl-reactive properties of phenylarsine oxide, respectively. The present results are the first to indicate regulation of oligomerization of an solute carrier family 6 transporter, the DAT, by substrates that act at DAT. In addition, the present study opens up the possibility of an important linkage between oligomerization of DAT and endocytic or other modulatory mechanisms impacting surface DAT.  相似文献   
9.
Many mechanisms either activate or inhibit the cdks and thereby either promote or arrest progression through the mitotic cell cycle. Since the signal transduction pathways emanating from extracellular mitogens and the agents controlling these pathways are complicated there may yet be novel mechanisms of cell cycle regulation remaining to be elucidated. In this article we outline the different techniques used to study the cell cycle and its regulation. These include: establishing that the cell cycle is arrested by propidium iodide staining followed by FACS analysis or by measuring 3H-thymidine incorporation into DNA; measuring the amount of cyclin/cdk associated kinase activity; assessing the steady-state expression profiles of cyclins, cdks and ckis by immunoblotting; and investigating the formation of complexes between these proteins by coimmunoprecipitations. Caveats and advantages of each technique are discussed. Following this paradigm yielded the discovery of the cell cycle inhibitors p27Kip1 and p21Cip1 and could very well lead to the discovery or novel cell cycle regulatory mechanisms.  相似文献   
10.
The cystic fibrosis transmembrane conductance regulator is a Cl(-) channel that belongs to the family of ATP-binding cassette proteins. The CFTR polypeptide comprises two transmembrane domains, two nucleotide binding domains (NBD1 and NBD2), and a regulatory (R) domain. Gating of the channel is controlled by kinase-mediated phosphorylation of the R domain and by ATP binding, and, likely, hydrolysis at the NBDs. Exon 13 of the CFTR gene encodes amino acids (aa's) 590-830, which were originally ascribed to the R domain. In this study, CFTR channels were severed near likely NH(2)- or COOH-terminal boundaries of NBD1. CFTR channel activity, assayed using two-microelectrode voltage clamp and excised patch recordings, provided a sensitive measure of successful assembly of each pair of channel segments as the sever point was systematically shifted along the primary sequence. Substantial channel activity was taken as an indication that NBD1 was functionally intact. This approach revealed that the COOH terminus of NBD1 extends beyond aa 590 and lies between aa's 622 and 634, while the NH(2) terminus of NBD1 lies between aa's 432 and 449. To facilitate biochemical studies of the expressed proteins, a Flag epitope was added to the NH(2) termini of full length CFTR, and of CFTR segments truncated before the normal COOH terminus (aa 1480). The functionally identified NBD1 boundaries are supported by Western blotting, coimmunoprecipitation, and deglycosylation studies, which showed that an NH(2)-terminal segment representing aa's 3-622 (Flag3-622) or 3-633 (Flag3-633) could physically associate with a COOH-terminal fragment representing aa's 634-1480 (634-1480); however, the latter fragment was glycosylated to the mature form only in the presence of Flag3-633. Similarly, 433-1480 could physically associate with Flag3-432 and was glycosylated to the mature form; however, 449-1480 protein seemed unstable and could hardly be detected even when expressed with Flag3-432. In excised-patch recordings, all functional severed CFTR channels displayed the hallmark characteristics of CFTR, including the requirement of phosphorylation and exposure to MgATP for gating, ability to be locked open by pyrophosphate or AMP-PNP, small single channel conductances, and high apparent affinity of channel opening by MgATP. Our definitions of the boundaries of the NBD1 domain in CFTR are supported by comparison with the solved NBD structures of HisP and RbsA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号