首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   34篇
  国内免费   35篇
  2023年   19篇
  2022年   8篇
  2021年   8篇
  2020年   13篇
  2019年   20篇
  2018年   17篇
  2017年   12篇
  2016年   10篇
  2015年   9篇
  2014年   22篇
  2013年   30篇
  2012年   8篇
  2011年   20篇
  2010年   16篇
  2009年   12篇
  2008年   20篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   8篇
  2002年   9篇
  2001年   1篇
  1997年   1篇
排序方式: 共有285条查询结果,搜索用时 109 毫秒
1.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
2.
Systemic lupus erythematosus (SLE) is the most common autoimmune disease in China. B cell activating factor (BAFF) is an important target for the treatment and detection of SLE. It is of great significance to develop novel molecular recognition elements with high affinity for BAFF. In this study, artificial nucleic acid aptamers against BAFF were screened from a 78 nt single-stranded DNA random library by systematic evolution of ligands exponential enrichment (SELEX) in vitro based on several selection and amplification steps. Through ten rounds of selection, the aptamers with high specificity and affinity for BAFF were identified. After high-throughput sequencing, several aptamers were selected and further examined for binding affinity and specificity. The investigation by dot blotting, Eastern blotting analyses and enzyme-linked oligonucleotide assay (ELONA) showed that the aptamers Apt 7 and Apt 12 with dissociation constants of 241.00±19.75 nmol/L and 413.51±46.94 nmol/L were able to recognize BAFF specifically. After molecular docking analysis, Apt 7 was truncated to Apt 7~1, and the dissociation constant was 192.10±28.61 nmol/L. A sandwich ELONA using Apt 7~1 and BAFF antibodies was established to detect BAFF. The detection limit was estimated to be 0.227 nmol/L. This study provides new molecular recognition elements for the detection of BAFF and the study of antagonists.  相似文献   
3.
Cancer is a worldwide increasing burden and its therapy is often challenging and causes severe side effects in healthy tissue. If drugs are loaded into nanoparticles, side effects can be reduced, and efficiency can be increased via the enhanced permeability and retention effect. This effect is based on the fact that nanoparticles with sizes from 10 to 200 nm can accumulate in tumor tissue due to their leaky vasculature. In this work, we produced polycaprolactone (PCL) in the sizes 1.8, 5.4, and 13.6 kDa and were able to produce spherical shaped nanoparticles with mean diameters of 64 ± 19 nm out of the PCL5.4 and 45 ± 8 nm out of the PCL13.6 reproducibly. By encapsulation of paclitaxel the diameter of that nanoparticles did not increase, and we were able to encapsulate 73 ± 7 fmol paclitaxel per 1000 particles in the PCL5.4‐nanoparticles and 35 ± 8 fmol PTX per 1000 PCL13.6‐nanoparticles. Furthermore, we coupled the aptamer S15 to preformed PCL5.4‐nanoparticles resulting in particles with a hydrodynamic diameter of 153 nm. This offers the opportunity to use these nanoparticles for targeted drug delivery.  相似文献   
4.
化疗是目前肿瘤治疗最常见的方法。然而,肿瘤细胞的多药耐药(multidrug resistance,MDR)常导致临床化疗失败及患者的死亡。因此,干预和逆转肿瘤多药耐药,提高化疗效果,对于肿瘤的治疗具有重要的意义。核酸适配体是一种短的单链寡核苷酸,通过折叠形成特定空间结构从而与靶标特异性结合。靶向肿瘤的核酸适配体可以选择性地将治疗性物质(抗癌药物,siRNA,miRNA)和药物载体递送至肿瘤中,对肿瘤进行靶向杀伤。利用核酸适配体靶向多药耐药性肿瘤,能够特异性干预甚至逆转肿瘤的多药耐药性。本文概述了核酸适配体介导的干预与逆转肿瘤多药耐药性的研究进展。  相似文献   
5.
A chemiluminescence (CL) sensing strategy for kanamycin residue detection in fish samples was established based on luminol-functionalized gold nanoparticles as CL nanoprobe materials combined with DNA hairpin structure and carboxyl-modified magnetic beads. Relying on nucleic acid amplification technology, the system can successfully realize the recycling of kanamycin, so that the biosensor can release a large number of luminol-functionalized gold nanoparticles with excellent CL performance even at a low residual levels of kanamycin. The biosensor strategy showed a good linear relationship with kanamycin in the range 0.09–130 nM, the detection limit was as low as 0.04 nM. This method proves the excellent performance of the sensing strategy and provides a low-cost and high-sensitivity CL analysis strategy for the detection of kanamycin and even other antibiotics.  相似文献   
6.
In this work, a highly sensitive biosensor for detecting cadmium ions (Cd2+) was developed based on a Cd2+-specific DNA aptamer and a hybridization chain reaction (HCR). The Cd2+ aptamer (named S0) was used to recognize Cd2+ and trigger the HCR. Without Cd2+, S0 initiated the HCR to form long nicked dsDNA structures to quench the fluorescence. Then, Cd2+ could bind with S0 to block HCR to recover fluorescence. This biosensor had high sensitivity with a detection limit of 0.36 nM and a linear range from 0 to 10 nM. Moreover, it showed a satisfactory selectivity and recovery rates.  相似文献   
7.
The analysis of estrogen receptor (ER) expression in breast carcinomas plays a crucial role in determining the endocrine responsiveness of tumors for systemic adjuvant therapy. Conventionally, the ER levels in breast carcinomas had been detected using the dextran-coated charcoal assay and radioimmunoassay, which are now substituted with safer and economic antibody-based assays such as immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Despite a gold (Au) standard method, the IHC has been criticized for factors such as tissue fixation, antibody selection, and threshold staining for result interpretation that could falsify test accuracy and reproducibility. The quest for alternative methods of ER quantification in tissue samples paved the way for aptamer-based diagnostics. Previously, we have isolated a DNA aptamer against human ER alpha (ERα) using an in vitro evolution system. In this study, we developed an electrochemical sensor using the 76-nucleotide DNA ERα- aptamer for rapid, precise, and cost-effective detection of ERα expression in human breast cancer patients. The aptasensor was constructed by covalently immobilizing the thiolated ERα- aptamer onto a screen-printed Au electrode. Construction of aptasensors was confirmed through atomic force microscopy and differential pulse voltammetry measurements. A detection limit of 0.001 ng/ml was calculated for full-length ERα (66.2 kDa) in a detection time of 10 min. Analysis of the cancerous breast tissue samples using the ELISA and aptasensor methods enabled distinctive classification of samples into the categories of ER −ve, weak ER +ve, and strong ER +ve samples. The current change of this aptasensor lies within 5% after a storage of 60 days at 4°C. Further studies on a reasonably large sample size are required to realize the clinical potential of the sensor.  相似文献   
8.
核酸适配体指利用指数富集配体系统进化技术筛选出的寡聚核苷酸片段,它可以特异性地识别靶标并与之结合,已经广泛应用于基础研究、临床诊断、纳米技术等。以下综述了适配体在微生物学方面的应用。  相似文献   
9.
Abstract

The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.

Communicated by Ramaswamy H. Sarma  相似文献   
10.
In the present work, a novel biocompatible scaffold was fabricated for the DNA aptamer immobilization. For the first time, amino‐functionalized dendritic fibrous nanosilica (KCC‐1‐nPr‐NH2) and gold nanoparticle supported by chitosan (AuNPs‐CS) were synthesized and electrodeposited successfully on the surface of the glassy carbon electrode by chronoamperometry technique. Unique oligonucleotide of aflatoxin M1 (5′‐ATC CGT CAC ACC TGC TCT GAC GCT GGG GTC GAC CCG GAG AAA TGC ATT CCC CTG TGG TGT TGG CTC CCG TAT) labeled by toluidine blue was immobilization on the prepared interface. Hence, a novel aptamer‐based bioassay was formed for highly sensitive quantitation of AFM1 using cyclic voltammetry and differential plus voltammetry. The structure and morphology of GQDs‐CS/KCC‐1‐nPr‐NH2 were investigated by Fourier‐transform infrared spectroscopy, X‐ray diffraction, atomic force, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy. The achieved low limit of quantification of apta‐assay for detection of AFM1 was 10fM. Also, calibration curve was linear from 0.1μM to 10fM in real samples. The proposed apta‐assay has acceptable long‐term stability. Designed aptasensor has a lot of remarkable advantages including excellent selectivity, sensitivity, and stability that could be used as facile bio‐device for the determination of AFM1 in milk samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号